PCT

‘WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : (11) International Publication Number: WO 99/40522
F 15/80 A2

Gos (43) International Publication Date: 12 August 1999 (12.08.99)

(21) International Application Number: PCT/US99/02959 | (81) Designated States: JP, KR, European patent (AT, BE, CH, CY,

(22) International Filing Date: S February 1999 (05.02.99)

(30) Priority Data:

09/019,134 us

5 February 1998 (05.02.98)

(71) Applicant: SHENG, George, S. [US/US); 25 Locke Street,
Winchester, MA 01890 (US).

(72) Inventors: GONION, Jeffry, E,; 217 Lancelot, Palatine, IL
60067 (US). BILBREY, Brett, C.; 5900 Prairic. Lane,
Patatine, TL 60067 (US).

(74) Agents: PERKINS, Jefferson et al.; Foley & Lardner, Suite
3300, 330 North Wabash Avenue, Chicago, IL 60611-3608
(US).

DE, DK, ES, Fl, FR, GB, GR, IE, IT, LU, MC, NL, PT.,
SE).

Published
Without international search report and to be republished
upon receipt of that repors.

(54) Title: DIGITAL SIGNAL PROCESSOR USING A RECONFIGURABLE ARRAY OF MACROCELLS

(57) Abstract

A real time digital systolic processor with a core of reconfigurable interconnected macrocells which can be programmed according to
function for processing high bandwidth digital data. Each macrocell contains arithmetic logic units for performing predetermined functions
based on format of the input data stream from an outside source or from other macrocells. The interconnects between each macrocell are
arranged so that the function of the device is predetermined according to user specific applications.

AM
AT
AU

BA
BB
BE
BF
BG

Z

BR

DK

88828223398

FOR THE PURPOSES OF INFORMATION ONLY

Codes used 1o identify States pasty to the PCT on the front pages of pamphlets publishing intemational applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Relgim
Burkina Faso
Bulgmia

Benin

Brazil

Delarus

Canada

Central African Republic
Congo
Switzerland
Ctte d'Tvoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
F1
FR
GA
GB
GB
GH
GN
GR
HU
1B
L
IS
IT
P
KE
Ko
Kp

KR
K2
Lc
n

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

reland

Israc)

Jeeland

Taly

Jepaa

Kenya

Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechienstein

Sri Lanka

Liberia

LS
LT
Lu
Ly
MC
mMD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lcsotho

Lithumnfa
Luxcmbaurg

Latvia

Monaco

Republic of Mcldova
Madagascay

The former Yugoslav
Republic of Macedonia
Mali

Mongolia
Mauritania

Malawi

Mexito

Niger

Netherlands

Norway

New Zealand

Poland

Portogal

Romania

Russian Federation
Sudan

Sweden

Singapore

st
SK
SN
sz
™
TG
ko)
™
TR
™
L1
uc
us
uz
VN
Yu
zw

Slovenia

Slovakia

Sencgal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Tarkey

Trinided and Tobogo
Ukraine

Uganda

United States of America
Uzbckistan

Viet Nam
Yugoslavia
Zimbabwe

Ll

WO 99/40522 PCT/US99/02959

DIGITAL SIGNAL PROCESSOR
1 BLE
The present invention relates generally to digital signal ‘processing, and more
particularly, to a real time digital systolic processor with a core of reconfigurable

interconnected macrocells which can be programmed according to function for processing

high bandwidth digital data.

WO 99/40522 PCT/US99/02959
BACKGROUND

Advances in semiconductor processing, design and device performance coupled
with dramatic reductions in manufacturing costs have created opportunities for digital
technologies to invade new and previously unrelated industries. For example, in the signal

5 processing arena, a shift is underway from analog media, such as composite television
signals, to precisely calculated digital representations like high-definition TV and compact
discs. As a result, a premium has been placed on the underlying hardware systems that
format, manipulate, transmit and resolve such signals.

Digital data, in particular picture images, such as GIF, JPEG and MPEG images,

10 video images for film industry, video images for video games, etc., must be processed on
the order of microseconds in order to appear as a "real time image” to the viewer.
Interactive enhanced-definition televisions may have decoder boxes for broadcast on
demand in the home. Digitally compressed cable television systems will offer ten times
the number of current channels. On-line access to databases, video games and libraries

15 through personal computers, cable lines and telephome will dramatically enhance
availability of information.

Digital Signal Processors ("DSPs”) and Field Programmable Gate Arrays (“FPGA”)
are typical of the types of devipes being used for processing digitally encoded signals.
DSPs are designed to process information in real time using built in computational units.

20 A DSP is arranged to decrease processing time by limiting execution of complicated
procedures in the control application software instructions and spending most of the

processing resources on resolving, decoding and communicating the incoming digital

‘o

2

10

15

20

WO 99/40522 PCT/US95/02959
signal. The DSP is considered to be a suitable “real time"” signal processor for most

applications, but may be unsuitable as a general purpose real time signal processor for
many of today's highly complex digital signal patterns. For high bandwidth signals, such
as uncompressed video, a DSP is often inadequate.

On the other hand, a FPGA is a versatile integrated circuit chip which often
includes an array of identical logic blocks. The internal circuitry of 2 FPGA can be
configured by an individual user to realize\ an application specific integrated circuit
(“ASIC"). During configuration, the user specifies the on-chip interconnect structure of
the FPGA. The resulting arrangement is a logic circuit that is suited for a giventask or
function. The core logic, however, remains the same regardless of its application,
resulting in a device with less than ideal performance characteristics in terms of efficiency
and throughput. Thus, although FPGAs are flexible as programmable application driven
devices, they lack the efficiency and processing speed required to handle complex image
processing algorithms. |

An integrated circuit architecture that can be configured at the mathematical
operation level (addition/subtraction/multiplication/comparisonyather than at the boolean
logic level (and/or/xor/invert) would provide tremendous advantages over prior art DSP
and FPGA technologies. FPGAs are made up of thousands or hundreds of thousands of
cells programmed or configured at the gate level using basic and/or boolean logic circuits.
This means that a single multiplication operation can represent thousands of boolean
operations. With a FPGA, mathematical constructs are not built in for efficiency since
it is intended to provide a general purpose logic processor. Many of today’s video

-
J

10

15

‘WO 99/40522 PCT/US99/02959
and digital data standards require high degrees of resolution and on-the-fly

reconfigurability. In image processing, for example, the image itself may be a two
dimensional array of values called pixels. Current DSP and FPGA technologies, however,
are two slow or consume undesirable amounts of circuitry to achigve real time processng
of the incoming data stream. As data throughput demands continue to increase, the need
for more flexible device architecturesalso increases. One approach is to couple core logics
into parallel arrangements for processing the data in piece-meal fashion. Systems
employing parallel processing techniques present obstacles to systems operators due to
complexities inherent in configuration, setup and interface to outside systems. Parallel
processors are often difficult to configure and require specialized knowledge both at the
devices and system level to achieve smooth interoperability with external subsystems.
What is needed is a device architecture that provides the real time signal processing
capability with internal reconfigurability functions suitable for handling today’s high
bandwidth digital signal formats_ such as compressed video, audio, compact disk, digital

versatile disc and mixed mode, among others.

10

15

20

WO 99/40522 PCT/US99/02959

SUMMARY OF THE INVENTION

Accordingly, the present invention provides a reconfigurable real time digital
processor comprising of a user determined set of interconnected macrocells operating in
conjunction to perform real time systolic processing of digital data. Interconnections
between macrocells are programmable so that the user defined set of macrocells may be
utilized to perform user specified functions or task.

In one embodiment, a systolic processor with an internal macrocell section having
a set of input ports for processing streams of incoming digital data is provided. V'I’he
macrocell section comprises 2 memory block used for equalizing incoming streams of
digital data, and a control circuit made up of flip flops, multiplexers and other standard
logic devices for dividing the incoming stream into an array of four unique oufput streams

In another embodiment, the macrocell contains at least one set of output ports for
delivering digital signals received from the equalization block following processing by
arithmetic units contained in the macrocell. A set of universal memory registers are used
by in-bound control circuits to control actions of the macrocell accordingto predetermined
configured functions.

In another embodiment, the macrocell section contains a plurality of arithmetic
logic units and input ports are used for selecting data inputs from a unique set of available
digital data streams received from the macrocell section. The macrocell section can
incorporate at least two adders which selectively perform arithmetic operations on the
incoming digital data. A multiplier is also used to perform a selective set of multiplicative
operations on the data stream. Together, the adders and multiplier achieve a pre-

5

10

WO 99/40522 - PCT/US99/02959
configured function using a set of configuration registers. A set of output ports are

coupled to the macrocell section for interfacing successive macrocells to each other.

In still another embodiment, a support block may be coupled to the interconnected
macrocells and arranged as an interface between the processor defined by the particular
arrangement of macrocells and one or more external systems. At least one of external
systems is capable of writing to macrocell memory registers for configuring the processor
according to user selected functions. An input block and an outputblock are also provided
for receiving digital data from the outside subsystems and transmitting them, after
processing, to the external systems.

Still other advantages and benefits of the invention will be understood by reference

to the following detailed description taken in conjunction with the attached drawings.

10

15

20

WO 99/40522 PCT/US99/02959
DESCRI

In the drawjngs:

Figure 1 is a high level depiction of the internal architecture of a prior art Digital
Signal Processor (*DSP”);

Figure 2 is a high leveldepiction illustrating the data architecture of the DSP shown
in Figure 1;

Figure 3 is a schematic drawing exemplary of a single macrocell in a Fit;.]d
Programmable Gate Array ('Fi’GA");

Figure 4 is a high level architectural diagram of a macrocell according to one
embodiment of the invention;

Figure 5 is a detailed circuit diagram of a first macrocell section according to one
embodiment of the invention;

Figure 6 is a detailed circuit diagram of the second macrocell section according to
one embodiment of the invention;

_ Figure 7 is a high level depiction of a Market Specific Integrated Circuit (*MSIC”)

using an array of macrocells according to one embodiment of the invention;

Figure 8 illustrates the internal flow process of an MSIC according to one
embodiment of the invention;

Figure 9 illustrates how data flows through the input/output block of an MSIC
according to one embodiment of the invention;

Figure 10a illustrates the data structure that the MSIC supports in one embodiment

of the invention;

WO 99/40522 PCT/US99/02959
Figure 10b is a flow diagram representing the operation process of the processor

interface of an MSIC according to one embodiment of the invention;

Figure 11a represents the flow processthrough a RAM block of an MSIC according
té one embodiment of the invention; and

Figure 11b illustrates how data handling problems associated with the macrocells

is handled according to one embodiment of the invention.

10

15

20

WO 99/40522 PCT/US99/02939

~ DETAILED DESCRIPTION

Turning to Figure 1, a high level architectural diagram of a standard Digital Signal
Processor ("DSP”) is shown and denoted generally as 10. DSP 10 has three independent,
full-function computational units 11 including an arithmetic/logic unit (*ALU") 12,
multiplier/accumulator ("MAC”) 14 and barrel shifter 16. All of the computational units
11 are capable of processing 16-bit data directly and also provide hardware support for
multi-precision computation.

The ALU 12 performs a standard set of arithmetic and logic operations in addition
to division primitives. The MAC 14 performs single-cycle multiply, multiply/add, and
multiply/subtract operations. The shifter 16 performs logical and arithmetic shifts,
normalization, de-normalization, and derive-exponent: operations. The shifter 16 also
i;nplemems numeric format control including multi-word floating-point representations.
In order to have the output of any unit capable of being the input of any unit on the next
cycle the computational units 11 are arrang?d side-by-side instead of serially. Sucha
comnection between the computational units 11 is possible via the internal result bus 18.
Computational units 11 contain input registers 20 and output registers 22 which are
accessible from the internal data mexﬁory data (DMD) bus 24.

Computational operations generally take their operands from input registers and
load the result into an output register. The registers act as a stop-over point for data
between memory and the computational circuitry. This feature introduces one level of

pipelining on input, and one level on output. Internal result bus 18 aliows the result of a

10

15

20

WO 99/40522 PCT/US99/02959
previous computation to be used directly as the inputto another computation. This avoids

excessive pipeline delays when a series of different operations are performed.

Addresses for on-chip or external memory access are supplied by two dedicated
data address generators (DAGs) 26 and a program sequencer 32. The DAGs 26 provide
memory addresses when memory data is transferred to or from the input or output registers
of the computational units 11. By using dual data address generators 26 the processor is
allowed to generate simultaneous addresses for dual operand fetches. DAG 28 can supply
addresses to data memory 34 only, while DAG 30 can supply addresses to either data
memory 34 or program memory 36.

The program sequencer 32 acts to maintain proper control of program flow and
together with the data address generators 26 keeps the computationalunits 11 continuously
working and maximizes throughput. The program sequencer 32 supplies instruction
addresses to the program memory 36 and is driven by the instruction register 38 which
holds the currently executing instruction. |

Instruction register 38 introduces a single level of pipelining into the program flow
such that the instructions are fetched and loaded into the instruction register38 during one
processor cycle and executed during the following cycle while the next instruction is being
pre-fetched. Furthermore, the program sequencer 32 also supports single-cycle conditional
branching and executes program loops with zero overhead.

The generic DSP described may have five internal buses. The program memod

address ("PMA”) 40 and data memory address (“DMA”) 42 buses are used internally for

10

10

15

20

WO 99/40522 PCT/US99/02959
the addresses associated with the program and data memory, while the program memory

data ("PMD") 44 and data memory data (*DMD”) buses 24 are used for the data associated
with the memory spaces. These buses are multiplexed46 into a single external address bus
48 and a single external data bus 50..

The PMA bus 40 is 14 bits wide and allows direct access of up to 16K words of
mixed instruction code and data. The PMD bus 44 is 24 bits wide and can accommodate
a 24-bit instruction width. Meanwhile, the DMA bus42 is 14 bits wide and allows direct
access of up to 16K words of data. Likewise the DMD bus 24 is 16 bits wide, and
provides a path for the contents of any register in the processor to be transferred to any
other register or to any data memory location in a single cycle. The PMD bus 44 can also
be used to transfer data to and from the computational units 11 through direct paths or via
the bus exchange unit 46. As mentioned previously, the internal result bus 18 transfers
intermediate results directly between the various computational units.

A DSP 10 must provide single-cycle computation for multiplication, multiplication
with accumulation, arbitrary amounts of shifting, and standard arithmetic and logic
operations. The ALU 12 must allow for any sequence of computations so that a given DSP
algorithm can be executed without reformulation. Thus, the DSP 10 provides internally
for compiled compact multiplier functions for performing various arithmetic functions.

The DSP 10 is limited in bandwidth since it doesn’t perform systolic operations for
signal processing at high rates of speed primarily because single processor is performing

all operations on the incoming data stream. Moreover, since most DSPs use interface

11

10

15

20

WO 99/40522 PCT/US99/02959
circuitry, the incoming data stream must be received and stored prior to processing. Afier

processing, the result is written onto a bus, memory space or other interna! architecture
where it can be communicated to a downstream device. Due to its lack of systolic
processing, the DSP must be interfaced to the incoming data stream with additional
circuitry.

Referring now to figure 2, the design limitations of a DSP are illustrated with the
high level block diagram 52. As mentioned, the arithmetic section of DSP 10 contains
three independent computational units: the ALU 12, the MAC 14, and barrel shifter 16.
These three units are connected via an internal result bus 18 so as to allow the output of
one unit to be used as the input to another. Furthermore the ALU 12 and MAC 14 have
direct connections to the program and data memory buses.

For DSP 10, the MAC result register 23 is a 40-bit accumulator which is divided
into two 16-bit pieces and an 8-bit overflow register. This 8-bit overflow register allows
for 256 MAC 14 overflows before a loss of data can occur. This is important as DSP
applications frequently deal with numbers over large dynamic ranges.

The disadvantages of DSP 10 inherent with computational processing units 50 is
the reduced processing speed for dynamic video signals. DSPs are not considered “real
time” for some applications, such as video images for the film industry. This is a result
primarily of the serial arrangement of the computational units 12, 14, and 16, which limit
overall system bandwidth. Moreover, a DSP does not handle systolic operations, nor

process signals, that come in at a high rate of speed. The configuration and addressing

10

15

20

WO 99/40522 PCT/US99/02959
techniques used with most DSPs 10 mean that incoming signals are buffered prior to

processing, requiring additional amounts of interface circuitry for hand-off to other
subsystems.

Turning now to figure 3, a schematic drawing exemplary of a single cell in aField
Programmable Gate Array ("FPGA”) is illustrated and denoted generally as 60. More
specifically, figure 3 illustrates the logic structure of one possible arrangement of an FPGA
capable of implementing all useful functions of the input variable 62 and input variable 64,
with the functions being selected by configuration control signals DO, DO, D1, D1,
-..through DS.

For example, to implement an AND gate, input leads 62 and 64 are shunted past
invertors 66 and 68, respectively, by high level signals on the D1 and DO configuration
control leads. Leads D1 and DO are connected to well-known pass transistors 70 and 72.
Low level signals are applied to the configuration control leads DO, D1, D4. Assuming
that DO, D1 and all of the other leads are cc;nnected to N channel MOS pass transistors,
the control signals D2, D2; D3 and D3 are "don’t cares”. That is, these signals can be high
or low without affecting the output signal 80. In addition, a high level signal on D5 is
applied to enable AND gate 74. Thus AND gate 74 serves as a two input AND gate
providing to NOR gate 76 the logical AND of input variables 62 and 64. The signal from
AND gate 74 is passed through NOR gate 76.

NOR gate 76 converts the high level signal from AND gate 74 to a low level signal

to turn off MOS transistor 78 (the source of which is grounded and the drain of which is

13

10

15

20

WO 99/40522 PCT/US99/02959
connected to the cutput lead 80) and to turn on through NOR gate 82 N channel transistor

84 (the drain of which is connected to a power supply and the source of which is connected
to both the output lead 80 and the drain of N channel transistor 78). Thus the structure
configured as described above is an AND gate. Other logic functions can also be produced
by appropriate selection of the control signal to be supplied to the configuration control
leads DO through DS to activate the appropriate pass transistors and gates within the
structure.

FPGAs are typically produced by interconnectinga plurality of active devices made
up of logical elements, such as the multipurpose circuit just discussed, in a base array in
any one of 2 number of ways to achieve a desired logic function. As gate arrays become
more complex, the simulation of the logic to be achieved from a given interconnection of
thg active devices in the base array becomes more difficult and is typically carried out
using a computer program. The layout of the actual interconnections for the active devices
in the base array to yield a finished gate array is then derived using a computer aided
design program of a type well known in the art. The process of designing such a structure
is complex and reasonably expensive requiring the use of logic simulation and verification
programs and semiconductor device layout programs.

The logic circuitry described above is a small cell of a FPGA. This could become
a complex network of circuitry when the application the FPGA is designed for becomes
complex, such as image processing. As these cells become more complex the number of
resources that are dedicated to data path routing in an FPGA become far too great. Image

processing requires extensive functions and a fast response time which the FPGA can not

14

10

15

20

WO 99/40522 PCT/US99/02959
provide. Accordingly, a need exists for an alternative approach which significantly

simplifies the obtaining of a given logic function from a base array of cells.

Turning to figure 4, a high level architecture of a macrocell according to the
invention is shown and denoted generally as 160. The macrocell 160 can be used as the
functional backbone of a reconfigurable logic device. Macrocell 160 can be configured to
perform two additions and one multiply for each pixel, effectively providing double the
amount of processing that could otherwise be accomplished using prior art devices.
Conditional expressions can be implemented, and the timing of incoming video signals is
automatically corrected to allow processing to be carried out appropriately.

The routing structures near adder 170 are comprised of multiplexers169 and 171.
Sign bit 186 of the addition result 188 drives the select line of multiplexer 169 controlling
the selection process between adder input 162 and 164. This can be used, for example,
to calculate min/max information. Thus, input.162 and input 164 to the adder 170 are
subtracted and the proper input from multiplexer 169 is selected based on the sign 186 of
the subtraction result 188. The routing structures near adder 182 comprised of
multiplexers 179, 181. Sign bit 177 of addition result 189 drives the select line of
multiplexer 181 controlling the selection process between multiplier result 180, input 162,
input 164, or multiplexer result 184. The multiplier result 180 can be delayed 172 and
fed into the second adder 182 as another input stream 184. This allows data on two

subsequent clock phases or pixels to be operated on together.

15

10

15

20

WO 99/40522 PCT/US99/02959
Incoming input-stream 162 is added 170 to a second stream 164, which may also

be a constant. The result 176 from multiplexer 171 is then multiplied 178 by a third

stream or constant 166. Finally that result 180 is added 182 to a fourth streamn 184 which

may also be a constant. The fourth stream 184 may be the multiplier result 180 delayed

by one or two clock phases 172 or input 168. Multiplexer 183 is the control circuitry used
to select from multiplier result 180 or input 168 with each clock phase. The final stage is
from multiplexer 179 selection of adder result 189 or multiplexer 181 result. The outputs
from macrocell 160 are a multiplicationresult stream 180 and a addition result stream174.

Figure 5 illustrates the low level architecture of the macrocell 160 portion. Data
streams entering a macrocell are first equalized in time to other data streams that will be
operated on in conjunction with each other. This insures delay equalization regardless of
the path taken by various signals (such as red, green, and blue). Data that has been
equalized may then pass directly to other logic within the macrocell 160 or may be used
as output to a subsequent macrocell if so configured. Equalization of data is performed by
equalization RAMs as illustrated in figure 6 and discussed below.

In one embodiment, the macrocell 160 may accesses up to four unique input
streams and produces up to four unique output streams with each output at two times the
pixel clock speed. In addition, six data registerscan be used to provide additional numeric
inputs to certain parts of the macrocell 160.

The macrocell diagram 160 shows the routing and control logic associated with a

macrocell 160. The low level depiction of 2 macrocell 160 illustrates how digital signals

16

10

15

20

WO 99/40522 PCT/US99/02959
may be processed using standard IC components such as adders, multipliers and an array

of combinational logic circuits. In one embodiment, six 16-bit constant registers are
generated from macrocell 160 and used to feed constant values to other logic of the
macrocell 160. Control logic is utilized to synchronize the actions of macrocell 160.

As shown, macrocell 160 includes multiplexer 194 whose selection of inputs 192
are driven by selection logic 196.
| Multiplexer 194 selects between one of the four unique input channels 192.
Multiplexers 194 selection of inputs 192 is controlled differently for each clock phase.
Input selection 198 is similar to input selection192, except the available inputs are the four
unique stream inputs 192, plus four constants 200 from on chip memory registers, for a
total of 8 possible inputs. Control logic 202 places a logical value on multiplexer 204's
select line enabling multiplexer204 to select from one of the four unique input streams 192
or from one of the constants 200.

Bitwise block 206 and bitwfse block 208 are also controlled individually for each
clock phase. Control logic 210 is used to select the functional operation of bitwise block
206 and 208. Bitwise block 206 and bitwise block 208 control data coming into adder 209.
Multiplexer result 212 and input data 214 from multiplexer 204 may pass untouched into
adder 209, negated, forced to zero, forced to one, force positive (absolute value), force
negative, and force +1 based on the sign of the input. To perform a negation, bitwise

block 206 and bitwise block 208 invert the bits, and set the carry input to the adder 209.

17

10

15

20

WO 99/40522 PCT/US99/02959
Therefore, if select input 212 and select input 214 are simultaneously negated, the adder

209 will produce an i_ncorrect result.

The numeric format of bitwise units 206 and 208 may be specified to accommodate
+1.14, +3.12, and 3-5.10 streams 500. No translation between data formats occur, and
the same control logic 210 controls both bitwise blocks 206 and 208, because the inputs
212 and 214 to the adder 209 must be the same format. The adders require two inputs of
the same numeric format, while multiplier 216 can operate on two inputs of differing
formats and generate an output format independent of the input formats. Adder 209
performs the designated operation and produces the adder result 218 which is made
available to multiplexer 220 preceding multiplier 216.

Multiplexer 222 selects from input 212 and input 214. Control logic 224 controls
nmltipiexer 222 selection process. Control logic 224 select line is controlled by the sign
bit 226 from the adder result 218. Note that the data passed is prior to any manipulation
dope by bitwise block 206 and bitwise block 208. Multiplexer 220 is used to make a
selection between the adder result 218, and mmltiplexer result 228 of the conditional
selection of bitwise block input 212 and bitwise block input 214.

Tnput stream 230 is similar to input stream 198, except that the sign bit 226 from
adder result 218 may also be used to control the selection of inputs for each clock phase,
and the available selection of constants is slightly different. Multiplexer 231 selection of
inputs is controlled by the logical value from the combinational logic circuitry 232.

Combinational logic 232 is the same as the logic circuitry for input selection192 and input

18

10

15

20

WO 99/40522 PCT/US99/02959
selection 198 except that the sign bit 226 from adder result 218 is used in the selection

process for each clock phase.

Multiplier 216 multiplies multiplexer result 234 with multiplexer result 236.
Muitiplier 216 does not require inputs to be of the same format to process data. Shift
register 238 places a configured portion of multiplier 216’s resuit on multiply output line
240. The user may specify which bits of the 32-bit result are passed forward to the next
stage.

Since adder 242 must operate with the same data format, the same control logic is
used to control the numeric format of bitwise unit 244 and bitwise unit 246. Control logic
248 is used to control the numeric operation of bitwise block 244 and bitwise block 246
for each clock phase. Sign bit 226 from adder result 218-is used to enable control logic
248 selection of operation mode for bitwise blocks 244 and 246. The control logic 248
controls the bitwise vnits 244 and 246 functional mode.

Input stream 250 is similar to input stream 230, except the avajlable selection of
constants is yet again slightly different. Sign bit 226 from adder result 218 enables control
logic 252 logic value used to enable multiplexer 254 selection of inputs.

Multiplexer 256 selects between the output of multiplexer 254, and the
multiplication output 240 delayed by either one or two clock phases 258. This allows
information on adjacent clock phases or adjacent pixels to be operated on together.
Control logic 260 controls multiplexer 262 selection of multiplication output 240 or

multiplication output 240 with one phase delay. The output of multiplexer 262 is also

19

10

15

20

25

WO 99/40522 PCT/US99/02959
delayed by one phase delay. Multiplexer 256 selects between the one or two phase delay

line or the output from muitiplexer 254,

Multiplexer 264 selects from any of the four adder inputs 212, 214, 240, 266 prior
to any of the bitwise block inputs. Multiplexer 268 and control logic 270 are logic
circuitry used to place the logic value on the select input line for multiplexer 264. Sign
bit 272 and sign bit 226 are used as the selection inputs to multiplexer 268. Multiplexer
282 selects from multiplexer result 274 and adder result 276. The selection is made with
each clock phase and passed on to the clipping block 278.

Control logic controls the functionof the clipping block 278 with each clock phase
to accommodate +1.14, +3.12, and 15.10 streams. Positive values may be clipped to
0.50, 999999, or 1.00. Negative values may be clipped to 0.00 or -0.50. At this point,
the data stream can be clipped to any pre-selected values, to insure that it meets with the
requirements of whatever format is used. Macrocell 160 offers two outputs a
multiplication result output 240 and a addition result oixtput 280.

In operation, the selection of inputs and constants into the macrocell is
accomplished during configuration depending on the application. Accordingly, a routine
simulating various functional operations of an MSIC are illustrated below according to

contemplated embodiments.

use ieee.std_logic_1164.all;
package MStypes is

constant MSstreamSize : integer : = 16;
constant MScstreamSize : integer : = MSstreamSize + 1;

20

10

15

20

25

30

35

40

45

50

WO 9%/40522 PCT/US99/02959

constant MSXIntegerSize : integer : = 2;

constant MSXFractionSize : integer := 14;

constant MSXSignPosition : integer := 15;

constani MSXintLeft : integer := MSXSignPosition;

constant MSXIntRight : integer : = 14;

constant MSXFracLeft : integer : = 13;

constant MSXFracRight : integer := 0;

constamt MSYIntegerSize : integer := 4;

constant MSYFractionSize : integer : = 12;

constant MSYSignPosition : integer : = MSXSignPosition;
constant MSYIntLeft : integer : = MSXSignPosition;
constant MSYIntRight : integer : = 12;

constant MSYFracLeft : integer := 1};

constant MSYFracRight : integer : = 0;

constant MSZIntegerSize : integer := 6;

constant MSZ FractionSize : integer : = 10;

constant MSZSignPosition : integer : = MSXSignPosition;
constant MSZIntLeft : integer : = MSXSignPosition;
constant MSZIntRight : integer := 10;

constant MSZFracLeft :integer := 9;

constant MSZFracRight : integer := 0;

constant modeX : std_ulogic_vector(! downto 0) :
constams modeY : std_ulogic_vector(1 downto 0) :
constant modeZ : std_ulogic_vector(l downto 0) :

"00"; — 2.14 format
“017; -- 4.12 format
*10"; -- 6.10 format

-- define various bus types
subtype MSstream is std_ulogic_vector(MSsireamSize-1 downto 0);
type MScarryStream is record
carry :sid_ulogic;
stream : MSstream;
end record;
subtype MSstreamMode is std_ulogic_vector(1 downto 0);
-- various functions that help out in places
function vec2stdu (D : std_ulogic_vector) rerurn sid_ulogic;
function stdu2vec (D : std_ulogic) remrn sid_vlogic_vector;
function cstream2vec (s : MScarrystream) reurn std_ulogic_vector;
function vec2cstream (v : std_ulogic_vector) return MScarrystream;
-- constants for the bitwise blocks
constant NOOP :std_ulogic_vector(2 downto 0) := *000~;

constant NEGATE : sid_ulogic_vector(2 downto 0) := "001";
constant POSITIVEABS : sid_ulogic_vector(2 downto 0) := "010";

21

10

15

20

25

30

35

40

45

WO 99/40522
constant NEGATIVEABS : std_ulogic_vector(2 dowato 0) := "011";
constant FORCEZERO : std_ulogic_vector(2 downto 0) : = "100";
constant FORCEONE : std_ulogic_vector(2 downto 0) := *101";
constant ONESIGN : std_ulogic_vector(2 downto 0) := "110";

-- constants for the clipping block

constant LCLIPNONE : std_ulogic_vector(1 downto 0) := "00";
constant LCLIPZERO, : sid_ulogic_vector(1 downto 0) := "01";
constant LCLIPHALF : std_ulogic_vector(! downto 0) := "107;
constant UCLIPNONE : std_ulogic_vector(1 downto 0) := *00";
constant UCLIPHALF : std_ulogic_vector(1 downto 0) := “01";

constant UCLIPALMOST : std_ulogic_vector(1 downto 0) := "10";
constant UCLIPONE : std_ulogic_vector(l downto 0) := "117;

end MStypes;
package body MStypes is

function vec2stdu (D : std_ulogic_vector) return std_ulogic is
begin rerurn D(0); end vec2stdu;

function stdu2vec (D : std_ulogic) return std_ulogic_vector is
variable v : std_ulogic_vector(0 downto 0); begin v(0) := D; return v; end stdu2vec;

function cstream2vec (s : MScarrystream) return std_ulogic_vector is
variable v : std_ulogic_vector(MScstreamSize-1 downto 0);
begin v : = stdu2vec(s.carry) & s.stream; return v; end cstream2vec;

function vec2cstream (v : sid_ulogic_vector) return MScarrystream is
variable s : MScarrystream;

s.carry = v(v'Left);

s.stream := v(MSstreamSize-1 downto 0);
return s; end vec2cstream;

end MStypes;

PCT/US99/02959

Likewise, the following is a sample of a simulation routine used to illustrate the

functionality of the various parts of the MSIC:

library ieee;
use jeee.std_logic_1164.all;
use work.MStypes.all;

10

20

25

30

35

40

45

L

WO 99/40522 PCT/US99/02959
entity MSdiyt is
port (clk : in std_ulogic; D : in MSstream; Q : out MSstream);
end;

architecture B of MSdly! is
signal internal : MSstream;

begin
Q < = internal;

dly : process (clk)
begin
if clk'event and clk="1" then
internal < = D;
end if;
end process;
end B;

library icee;
use icee.std logic 1164.all;
use work.MStypes.all;

package MSdelay is'
component MSdly§
port (clk : in std_ulogic; D : in MSstream; Q : out MSstream);

end component;

end MSdelay;
The following simulation routine in one embodiment may be used to illustrate the

Tunctionality of various parts of 2 macrocell, such as the bitwise arithmetic logic untis.

- Bitwise ALU

library ieee;
use ieee.std Jogic_1164.all;

use work.MStypes.all;

entity MSbitwise is

port (operation : in std_ulogic_vector(2 downto 0);
mode :in MSstreamMode;
D :in MSstream;
Q : out MScarryStream);

end;

23

10

15

20

25

30

35

40

45

50

WO 99/40522 PCT/US99/02959
architecture B of MSbitwise is

signal incomingSignBit : sid_ulogic;
signal wideSign, wideZero, mungeX, mungeY, mungeZ : MSstream;

begin

— We support 2.14, 4.12, and 6.10 modes. All share the same position for the sign bit!
incomingSignBit < = D(MSXSignPosition);

sGen: for i in wideSign'Left downto wideSign'Right generate
wideSign(i) < = incomingSignBir;
end generate;

zGen: for i in wideZero'Left downto wideZero'Right generate
wideZero(i) <= '0";
end generate;

— How it works:

- outgoing field: carryout
— incoming fields: sign {integer} one fraction
-] it one fra

— Force Outpwt "0* 0 0 0 0 0
— Force Ouiput "1° 0 0 1 0 0

~ value s int one fra 0

— -value Is lint lopne !ra 1

~ |value| 0 sXORint sXORone sXORfra s
- -]value} 1 !sXORint !sXORone !IsXORfra !s
- +/-1 s s 1 0 0

— sign bit

—~ vpassforv, +/-

~ invent for-v

- set for -}v|

~ clear otherwise

with operation select mungeX(MSXIntLeft) < =
incomingSignBit when NOOP | ONESIGN,
not incomingSignBit when NEGATE,
‘1" when NEGATIVEABS,
‘0" when others;

with operation select mungeY(MSYIntLeft) < =
incomingSignBit when NOOP | ONESIGN,
-niot incomingSignBit when NEGATE,
'1* when NEGATIVEABS,
'0° when others;

with operation select mungeZ(MSZIntLeft) < =

incomingSignBit when NOOP | ONESIGN,
not incomingSignBit when NEGATE,

24

10

15

20

25

30

35

40

45

50

WO 99/40522
'1* when NEGATIVEABS,
‘0" when others;

-- all integer bits except for the ones’ place (excluding incoming sign bir)
- pass forv

-- invert for -v

-~ XOR with incoming sign for |v}

-~ XOR with inverted incoming sign for -|v]

-- replace with sign for +/-

-- clear otherwise

- mungeX is s1.14 format and has no bits here

with operation select mungeY(MSYInLeft-1 downto MSYIntRight+1) <=
D(MSYIntLefi-1 downto MSYIntRight +1) when NOOP,
not D(MSYloiLeft-1 downto MSYIntRight+1) when NEGATE,
wideSign(MSYIntLeft-1 downto MSYIntRight+1) xor
D(MSYIntLeft-1 downto MSYIntRight +1) when POSITIVEABS,
not wideSign(MSYIntLefi-1 downto MSYIntRight+1) xor
D(MSYIntLeft-1 downto MSYIntRight + 1) when NEGATIVEABS,
wideSign(MSYIniLeft-1 downto MSYIntRight+1) when ONESIGN,
wideZero(MSYIntLefi-1 downto MSYIntRight+ 1) when others;

with operation select mungeZ(MSZIntLefi-1 downto MSZIntRight+1) < =
D(MSZIntLeft-1 downmo MSZInRight-+1) when NOOP,
not D(MSZIntLeft-1 downto MSZIntRight+1) when NEGATE,
wideSign(MSZIntLeft-1 downto MSZIntRight+1) xor
D(MSZntLeft-1 downto MSZIntRight+ 1) when POSITIVEABS,
not wideSign(MSZInLefi-1 downto MSZIntRight+1) xor
D(MSZIniLeft-1 downio MSZIniRight + 1) when NEGATIVEABS,
wideSign(MSZIniLeft-1 downto MSZIntRight+1) when ONESIGN,
" wideZero(MSZlntLeft-1 downto MSZIntRight+ 1) when others;

-- the integer bit corresponding to the opes place
— passforv

— invert for -v

- XOR with incoming sign for |v|

— XOR with inverted incoming sign for -]v|
- setforl, +/-

-- clear otherwise

with operation select mungeX(MSXIntRight) <=
DMSXIntRight) when NOOP,
not D(MSXintRight) when NEGATE,
incomingSignBit xor D(MSXIntRight) when POSITIVEABS,
not incomingSignBit xor DMSX IntRight) when NEGATIVEABS,
'1' when FORCEONE | ONESIGN,
'0’ when others;

with operation 3elect mungeY(MSYIntRight) <=
DMSYIntRight) when NOOP,

25

PCT/US99/02959

10

15

20

25

30

35

40

45

50

WO 99/40522
not D(MSYIntRight) when NEGATE,
incomingSignBit xor DMSYIntRight) when POSITIVEABS,
not incomingSignBit xor DOIMSYIntRight) when NEGATIVEABRS,
'1" when FORCEONE | ONESIGN,
'0" when others;

with operation select mungeZ(MSZIntRight) < =
D(MSZIntRight) when NOOP,
not D(MSZIntRight) when NEGATE,
incomingSjgnBit xor D(MSZIntRight) when POSITIVEABS,
not incomingSignBit xor D(MSZIntRight) when NEGATIVEABS,
'1* when FORCEONE | ONESIGN,
‘0" when others;

- the fraction bits

- pass forv

-~ invert for -v

—~ XOR with incoming sign bit for |v|

-~ XOR with inverted incoming sign for -|v|
- clear otherwise

with operation select mungeX(MSXFracLeft downto MSXFracRight) < =
D(MSXFracLeft downto MSXFracRight) when NOOP,
not D{MSXFracLeft downto MSXFracRight) when NEGATE,
wideSign(MSXFracLeft downto MSXFracRight) xor
D(MSXFracLeft downto MSXFracRight) when POSITIVEABS,
not wideSign(MSXFracLeft downto MSXFracRight) xor
D(MSXFracLeft downto MSXFracRight) when NEGATIVEABS,
wideZero(MSXFracLeft downto MSXFracRight) when others;

with operation select mungeY(MSYFracLeft downto MSY FracRight) < =
D(MSYFracLeft downto MSYFracRight) when NOOP,
not D(MSYFracLeft downto MSYFracRight) when NEGATE,
wideSign(MSYFracLeft downto MSYFracRight) xor
D(MSYFracLeft downto MSYFracRight) when POSITIVEABS,
not wideSign{MSYFracLeft downto MSYFracRight) xor
D(MSYFracLeft downto MSYFracRight) when NEGATIVEABS,
wideZero(MSYFracLeft downto MSYFracRight) when others;

with cperation select mungeZ(MSZFracLeft downto MSZFracRight) < =
D(MSZFracLeft downto MSZFracRight) when NOOP,
not D(MSZFracLeft downto MSZFracRight) when NEGATE,
wideSign(MSZFracLeft downto MSZFracRight) xor
D(MSZFracLeft downto MSZFracRight) when POSITIVEABS,
not wideSign(MSZFracLeft downto MSZFracRight) xor
D(MSZFracLeft downio MSZFracRight) when NEGATIVEABS,
wideZero(MSZFracLeft downto MSZFracRight) when others;

with operation select Q.carry < =
incomingSignBit when POSITIVEABS,

26

PCT/US99/02959

10

15

20

25

30

35

40

45

50

o —

WO 99/40522

not incomingSignBit when NEGATIVEABS,
'1’ when NEGATE,

‘0’ when others;

with mode select Q.stream < = mungeX when modeX,
mungeY when modeY,
mungeZ when others;

end B;

library icee;

use jeee.std_logic_1164.all;
use ieee.std_logic_signed.all;
use work.MStypes.all;

entity MSstreamAdder is
port (A, B : in MScarrySiream;
Y :out MScarryStream);
end;

architecture B of MSstreamAdder is

signal inA, inB, inC, ontY : sid_logic_vector(MScstreamSize-1 downto 0);

begin

inA(inA’Left-1 downto 0) <= To StdLogchcctor(A stream);

mA(nA'Left) <= '0';

inB(inB'Lefi-1 downto 0) < = To_StdLogicVector(B.stream);

inB(inB'Lef) <= '0";

ZGen: for i in inC'Left downto inC" Rxght+l generate

mC(i) <="0";
end generate;
inC(0) <= A.camry or B.camry;

outY <= inA + inB + inC;

Y.stream <= To_SidULogicVector(ourY(MSstreamSize-1 downto 0));

Y.carry <= omY (omtY'Left);

end B;

use work.COMPONENTS.all; ~ /synopsys/libraries/syn/Isi_components.vhd

architecture CarrySelect of MSstreamAdder is

~ HalfAdder : HAl portmap (A => ,

- FullAdder : FAl pont map (CI =

begin

27

PCT/US99/02959

10

15

20

25

30

35

45

50

WO 99/40522
level0: for i in A.stream’Left downto A.stream'Right generate

end generate;

end CarrySelect;

library ieee;
use ieee.std logic_1164.all;
use work.MStypes.all;

entity CarryLookahead is

generic (bits : positive);

port (CI :in std_ulogic;
A, B : in sid_ulogic_vector(bits-1 downto 0);
§ : out sid_ulogic_vector(bits-1 downto 0);
CO :outstd_ulogic);

end;

architecture B of CarryLookahead is
signal G, P : std_ulogic_vector(bits-1 downto 0);
signal C : std_ulogic_vector(bits downto 0);
begin
C(0) <= CIL;
gen: for i in bits-1 downto 0 generate
G@l) <= A() and B(i); -
P(i) <= A() xor B(i);
C(i+1) <= G(@) or (P(i) and C(i));
S@i) <= P(i) xor C(i);
end generate;
CO < = C(bits);
end B;

DESIGN UNIT 3

DESIGN UNIT 3

library iece;
use ieee.std logic_1164.all;
use work.MStypes.all;

entity Carryl.ookahead4 is

port (C1 :in std_ulogic;
A, B in std ulogic_vector(3 downto 0);
S :outstd ulogic_vector(3 downto 0);
CO : out std_ulogic);

end;

use work. COMPONENTS.all; -- Isynopsyslhbraneslsyn!lsn _components.vhd

architecture Omondi of CarryLookahead4 is
signal G, P : std_ulogic_vector(3 downto 0);
signal C : std_ulogic_vector(4 downto 0);
signal q : std_ulogic_vector(9 downto 0);
signal q6a, cda : std_ulogic;

begin

28

PCT/US99/02959

10

15

20

25

30

35

40

45

50

WO 99/40522 PCT/NUS99/02959
C(0) <=CL

gen: for i in 3 downto O generate
iGx : ND2 port map (A(i). B(i), iG(@i));
G(i) <= not iG(i);
Px : EO port map (A(i), B(i), P());
Si: EO port map (P(i), C(i), S(i));
end generate;

0QO : ND2 port map (P(0), C(0), Q(0));

0Q1 : ND3 port map (P(1), P(0), C(0), Q(1));
0Qz2 : ND2 port map (F(1), G(0), Q(2));

0Q3 : ND4 port map (P(2), P(1), P(0). C(0), Q(3));
0Q4 : ND3 port map (P(2), P(1), G(0), Q(4));
0Q5 : ND2 port map (P(2), G(1), Q(5));

0Q6 : NDS5 port map (P(3), P(2), P(1), P(0), C(0), Q(6));
0Q7 : ND4 port map (P(3), P(2), P(1), G(0), Q(7));

0Q8 : ND3 port map (P(3), P(2), G(1), Q(8));

0Q9 : ND2 port map (P(3), G(2), Q(9)):

¢l : ND2 port map (iG(0), Q(0), C(1));

2 : ND3 port map (iG(1), Q(1), Q(2), C(2));

¢3 : ND4 port map (iG(2), Q(3), Q(4), Q(5), C(3));

¢4 : ND5 port map (iG(3), Q(6). Q(7), Q(8), Q(9), CO);

end ModifiedOmondi;

use work.GTECH_components.all; — /synopsys/packages/gtech/src/GTECH_components.vhd
architecture GTModifiedOmondi of CarryLookahead4 is
signal iG, G, P, C : std_ulogic_vector(3 downto 0);
signal q : std_ulogic_vector(9 downto 0);
begin
C(0) <=CIL;
gen: for i in 3 downto 0 generate
iGx : GTECH_NAND2 port map (A(i), B(i), iG()):
G(i) <= not iG(i); :
Px : GTECH_XOR2 port map (A(3), B(i), PG));
Si : GTECH_XOR2 port map (P(i), C(i), S()):
end generate;
nQ0 : GTECH_NAND? port map (P(0), C(0), Q(0));

Q! : GTECH_NAND?3 port map (P(1), P(0), C(0), Q(1));
nQ2 : GTECH_NAND2 port map (P(1), G(0), Q(2));

nQ3 : GTECH_NAND4 port map (P(2), P(1), P(0), C(0). Q(3));

29

10

15

20

25

30

35

45

50

WO 99/40522
nQ4 : GTECH_NANDS3 port map (P(2), P(1), G(0), Q(4));
nQ5 : GTECH_NAND2 port map (P(2), G(1), Q(5):

nQ6 : GTECH_NANDS port map (P(3), P(2), B(1), P(0), C(0), Q(6));

nQ7 : GTECH_NANDA port map (P(3), P(2), (1), G(0), Q(7);
nQ8 : GTECH_NAND?3 port map (P(3), P(2), G(1), Q(8));
1Q9 : GTECH_NANDZ port map (P(3), G(2), Q(9));

cl : GTECH_NAND2 port map (iG(0), Q(0), C(1));
¢2 : GTECH_NAND3 port map (iG(1), Q(1), Q(2), C(2));
€3 : GTECH_NANDM port map (iG(2), Q(3). Q(4), Q(5). C(3));

¢4 : GTECH_NANDS port map (iG(3), Q(6), Q(7), Q(8), Q(9), CO);

end GTModifiedOmondi;

architecture Beh of CarryLookaheadd is
signal G, P : std_ulogic_vector(3 downto 0);
signal C : std_ulogic_vector(4 downto 0);
begin
gen: for § in 3 downto O generate
G(i) <= A() and BGi);
PG <= A(i) xor B(i);
— C@i+1) <= G() or (P(i) and C(i));
S@) <= P(i) xor C(i);
end generate;
C0) <=CI
C(1) <= G(0) or (P(0) and C(0));
C(2) <= G(1) or (P(1) and G(0))
or (P(1) and P(0) and C(0));
C(3) <= G(2) ar (P(2) and G(1)) or (P(2) and P(1) and G(0))
or (P(2) and P(1) and P(0) and C(0));

PCT/US99/02959

C@) <= GE)or (PR) and G(2)) or (P(3) and P(2) and G(1)) or (P(3) and P(2) and P(1) and G(0))

or (P(3) and P(2) and P(1) and P(0) and C(0));
CO <= C(@4);
end Beh;

- MSstream Multiplier

library ieee;

use iece.std_logic_1164.all;
uvse jeee.std_logic_signed.all;
--use ieec.std_logic_arith.all;
use work.MStypes.all;

entity MSstreamMultiplier is

port (A, B: in MSstream;
mode : in sid ulogic_vector(2 downto 0);

Y :out MSsiream);

DESIGN UNIT 3

10

15

20

25

30

35

40

45

50

WO 99/40522 PCT/US99/02959

end;
architecture B of MSstreamMultiplier is

signal outY = std_ulogic_vector(MSstreamSize*2-1 downto 0);
signal signExtended : sid_ulogic_vector(MSstreamSize*2+ 1 downio 0);

begin

outY <= To_StdULogicVector(To_StdLogicVector(Ay To_StdLogicVector(B));-- multiply the stream s

— use only 31 places, becase redundant sign in msbs (b31==b30)
signExtended(outY' Lefi-1 downto outY'Right) <= outY(outY'Lefi-1 downto outY'Right);

- now sign extend to 34 binary places

signExtended(signExtended’Left-2) < = outY(outY Left-1);
signExtended(signExtended’Left-1) <= outY(oulY'Lefi-1);
signExtended(signExtended'Left) < = outY(owtY Left-1);

with mode select Y < = signExtended(33 downto 18) whea 000", —1.14 x 1.1410 5.10
signExtended(31 downto 16) when "0031~, -- three combinations
signExtended(30) & signExiended(28 downto 14) when *010°, -- six combinations
signExtended(30) & signExtended(26 downto 12) when 011", -- seven combinations
signExtended(30) & signExtended(24 downto 10) when "100", — six combinations
signExtended(30) & signExtended(22 downto 8) when "101*, — three combinations
signExtended(30) & signExiended(20 downto 6) when others; — 5.10x 5.10 to 1.14

end B;
DESIGN UNIT 4

library ieee;
use ieee.std_logic_1164.all;
use work.MStypes.all;

entity MSstreamClip is
port (operation : in std_ulogic_vector (3 downto 0);
mode :in MSstreamMode;

D : in MSstream;

Y : out MSstream); -
end;
architecture B of MSstreamClip is

signal isNegative : Boolean;

signal zero, pesMaximum, negMaximum, ove, almostOne, poshalf, neghalf : MSstream;
signal oneX, almostOneX, posHalfX, negHalfX : MSstream;
signal oneY, almostOneY, posHalfY, negHalfY : MSstream;
signal oneZ, almostOneZ, posHalfZ, negHalfZ : MSstream;

31

WO 99/40522 PCT/US99/02959
begin
zero <= (others => '0');

posMaximum(posMaximum'Left-1 downto posMaximum'Right) <= zero(zero'Left-1 downto
zero’Right);

10

15

20

25

30

35

posMaximum(posMaximum‘Left) <= '1";
negMaximum < = not posMaximum;

gl: for i in MSXFracLeft downto MSXFracRight generate oneX(i) < = '0'; end generate;
g2: for i in MSYFracLeft downto MSYFracRight generate oneY(i) < = *0'; end generate;
g3: for i in MSZFracLeft downto MSZFracRight generate oneZ(i) < = '0'; end generate;

oneX(MSXIniRight) <= "1";
oneY(MSYIniRight) <= "'1";
oneZ(MSZIntRight) < = '1’;

g4: for i in MSXIntLeft downto MSXIntRight+ 1 generate oneX(i) <= '0"; end generate;
g3: for i in MSYIntLeft downto MSYIntRight +1 generate oneY(i) <= '0'; end generate;
g6: for i in MSZIntLeft downto MSZIntRight+1 generate oneZ(i) < = '0'; end generate;

g7: for i in MSXFracLeft downto MSXFracRight generate almostOneX(i) <= ‘1’; end generate;
£8: for i in MSYFracleft downto MSYFracRight generate almostOneY (i) < = °'1'; end generate;
g9: for i in MSZFracLeft downto MSZFracRight generate almostOneZ(i) < = '1°; end generate;

210: for i in MSXIntLeft downto MSXIntRight generate almostOneX(i) <= ‘0°; end generate;
gll: for i in MSYIntLeft downto MSYIntRight generate almostOneY(i) < = '0'; end generate;
gl2: for i in MSZlIntLeft downto MSZIntRight generate almostOneZ(i) < = '0'; end generate;

g13: for i in MSXFracLeft-1 downto MSXFracRight geﬁerate posHalfX(i) <= '1'; end generate;
gl4: for i in MSYFracLeft-1 downto MSYFracRight generate posHalfY(i) < = '}’; end generate;
g15: for i in MSZFracLeft-1 downto MSZFracRight generate posHalfZ(i) < = 'I; end generate;

posHalfX(MSXFracLeft) < = '0';
posHalfY(MSYFracleft) < = '0';
posHalfZ(MSZFracLeft) < = '0';

g16: for i in MSXIntLeft downto MSXIntRight generate posHalfX(i) < = '0'; end generate;
g17: for i in MSYIntLeft downto MSYIntRight generate posHalfY(i) < = '0'; end generate;
818: for i in MSZIntLeft downto MSZIntRight generate posHalfZ(i) <= '0’; end generate;

g19: for i in MSXFracLeft-1 downto MSXFracRight +1 generate negHalfX(i) < = '0’; end geperate;
§20: for i in MSYFracLeft-1 downto MSYFracRight+1 generate negHalfY(i) < = '0'; end generate;
g21: for i in MSZFracLeft-1 downto MSZFracRight+1 generate negHalfZ(i) < = '0’; end generate;

negHalfX(MSXFracLeft) <= "1';
negHalfY(MSYFraclLeft) <= '1';
negHalfZ(MSZFracLeft) < = '1';
negHalfX(MSXFracRight) <= '1’;
negHalfY(MSYFracRight) <= '1";
negHalfZ(MSZFracRight) <= '1’;

10

15

20

25

30

35

40

45

50

WO 99/40522

PCT/US99/02959

g22: for i in MSXIntLeft downto MSXIntRight generate negHalfX(i) <= 'I'; end generate;
823: for i in MSYIntLeft downto MSYIntRight generate negHalfY(i) < = '1'; end generate;
g24: for i in MSZIntLeft downto MSZIntRight generate negHalfZ(i) <= '1’; end generate;

with mode select one < = oneX when modeX,
oneY when modeY,
oneZ when others;

with mode select almostOne < = almostOneX when modeX,
almostOneY when modeY,
almostOneZ when others;

with mode select posHalf < = posHalfX when modeX,
posHalfY when modeY,
posHalfZ when others;

with mode select negHalf < = negHalfX when modeX,
negHalfY when modeY,
negHalfZ when others;

with D(D’Left) select isNegative < = true when '1°, false when others;

clip : process (D, operation, zero, one, almostOne, posHalf, negHalf,
posMaximum, negMaximum, lsNeganve)
variable lowerLimit, upperLimit : MSstream;
variable cliplow, cliphigh : Boolean;
begin

case operation (1 downto 0) is
when LCLIPZERO => lowerLimit := zero;
when LCLIPHALF => lowerLimit := negHalf;
when others = > lowerLimit : = negMaximum;
end case;

if operation(1)="1" or operation(0)="1" then
cliplow ;= true;

else
cliplow := false;

end if;

case operation (3 downto 2) is
when UCLIPHALF = > upperLimit := posHalf;
when UCLIPALMOST = > upperLimit : = almostOne;
when UCLIPONE => upperLimit : = one;
when others => upperLimit := posMaximum;
end case;

if operation(3)="1" or operation(2)="1" then
cliphigh : = true;

else
cliphigh : = false;

10

20

25

30

35

40

45

50

WO 99/40522
end if;

if isNegative then
if cliplow then
if D < lowerLimit then
Y <= lowerLimit;
else
Y <=D;
end if;
else
Y <=D;
end if;
else
if cliphigh then
if D > upperLimit then
Y < = upperLimit;
else
Y <=D;
end if; i
else
Y <=D;
end if;
end if;

end process;

end B;

library icee; :
use ieee.std logic_1164.all;
use work.MStypes.all;

package MSarith is

component MSbitwise
port (operation : in std_ulogic_vector(2 downto 0);
mode :in MSswreamMode;
D :in MSstream;
Q : out MScarryStream);
end component;

component MSstreamAdder
port (A, B: in MScarryStream;
Y :out MScarryStream);
end component;

component MSstrearnMultiplier
port{ A, B : in MSstream;
mode : in std_ulogic_vector(2 downto 0);
Y :out MSstream);
end component;

34

DESIGN UNIT 4

PCT/US99/02959

10

15

20

25

30

35

45

WO 99/40522
component MSstreamClip
port (operation : in std_ulogic_vector (3 downto 0);
mode :in MSstreamMode;
D :in MSstream;
Y - out MSstream);
end component;

component CarryLookahead
generic (bits : positive);
port (CI : in std_ulogic;
A, B : in std_ulogic_vector(bits-1 downto 0);
S :ousid ulogic_vector(bits-1 downto 0);
CO : out std_ulogic):
end component;

component CarryLookahead4
port (Cl :insid ulogic;
A, B: in std ulogic_vector(3 downto 0);
S :outstd ulogic_vector(3 downto 0);
CO :out std_ulogic);
end component;

end MSarith;

PCT/US99/02959

In one embodiment the following logic routine illustrates the simulationroutine that

simulates in one embodiment the functionality of an MSIC chip:

- 2-input MSIC stream multiplexer, single output
— sel - selects which input

- DO,DI - stream inputs

- Q - stream output

library icee; .
use jeee.std_logic_1164.all;
use work-MStypes.all;

entity MSmux2stream is
port (sel : in std_ulogic; DO, D1 : in MSstream; Q : out MSstream)
end;

architecture B of MSmux2stream is
begin
" with sel select

Q <= D0 when '0’, DI when others;
end B;

- d-input MSIC stream multiplexer, single output

— sel - selects which input
-- Dm - stream inputs (D0-D3)

35

10

15

20

25

30

35

45

50

WO 99/40522
-~ Q -streamoutput

library icee;
use jece.std_logic_1164.all; -
use work.MStypes.all;

entity MSmux4stream is
port { sel : in std_ulogic_vector (1 downto 0);
DO, D1, D2, D3 : in MSstream; Q : out MSstream);
end;

architecture B of MSmuxdstream is
begin

with sel select Q < = DO when 00", D] when "01", D2 when "10", D3 when others;

end B;

-~ 8-input MSIC stream multiplexer, single output
— sel -selects which input

—~ Dn - stream inputs (D0-D7)

-~ Q -stream output

library iece;
use jece.std_logic_1164.all;
use work.MStypes.all; -

. entity MSmux8stream is

port (sel : in std_ulogic_vector (2 downto 0);
D0, D1, D2, D3, D4, D5, D6, D7 : in MSstream; Q : out MSstream);
end;

architecture B of MSmux8stream is
begin
with sel select
Q <= DO when 000", D1 when “001", D2 when "010", D3 whea "011°,
D4 when 100", DS when “101°, D6 when "110", D7 when others;
end B;

~ 2-output decoder

- enable - enables the decode
—~ sel -chooses which output
-~ Yn - one hot output

library ieee;
use ieee.std_logic_1164.all;
entity MSdecode2 is

port (enable : in std_ulogic;

sel :in std_ulogic;
Y0,Y1 : out sid_ulogic);

36

PCT/US99/02959

10

15

20

25

30

35

40

45

50

WO 99/40522
end;

architecrure B of MSdecode? is
begin
decode?2 : process (enable, sel)
begin
Y0 <= "0';
Yi <= '0;
if enable="1" then
case sel is .

when '0° => Y0 <="1'; when others => Y1 <= "1';

end case;
end if;
end process;
end B;

— 4-output decoder

- enable - enables the decode
—~ sel - chooses which output
— Yn - one hot output

library ieee;
use ieee.std_logic_1164.all;

entity MSdecoded is
port (enable : in std_ulogic;
sel :instd ulogic_vector(1 downto 0);
Y0,Y1,Y2,Y3 : out std_ulogic);
end;

architecture B of MSdecodes is
component MSdecode2 .
port (enable : in std_ulogic;
sel :in std vlogic;
Y0,Y1 : out std_ulogic);
end component;
signal topsel, botsel : std_ulogic;
begin
topsel <= enable and not sel(sel’Left);
botsel <= enable and sel(sel’'Left);
top2 : MSdecode2 port map (topsel, sel(0), YO, Y1);
bottom2 : MSdecode2 port map (botsel, sel(0), Y2, Y3);
end B;

architecture B2 of MSdecode4 is
begin
decoded : process (enable, sel)
begin
YO <="0Yl <="0;Y2<="0";Y3 <="0;
if enable="1" then

37

PCT/US99/02959

10

15

20

25

30

35

40

45

50

WO 99/40522
case sel is
when "00" => YO <="1";
when "10" => Y2 <="1";
end case;
end if;
end process;
end B2;

- 8-output decoder

— enable - enables the decode
-~ sel - chooses which output
-~ Yn - one hot output

library ieee;
use ieee.sid_logic_1164.all;

entity MSdecode8 is
port (enable : in std_ulogic;

when "01" => Y1l <=")’;
when others => Y3 <= ‘1';

sel :in std ulogic_vector(2 downto 0);
Y0,Y1,Y2,Y3,Y4,Y5,Y6,Y7 : out std_ulogic);

end;

architecture B of MSdecode8 is
component MSdecoded
* port (enable : in std_ulogic;

sel :in std ulogic_vector(l downto 0);

Y0,Y1,Y2,Y3 : out std_ulogic);

end component;
signa) topsel, botsel : std_nlogic;
begin

topsel < = enable and not sel(sel'Left);

botse! <= enable and sel(sel’Left);

top4 : MSdecoded port map (topsel, sel(sel’Lefi-1 downto 0), YO0,Y1,Y2,Y3);
bortond : MSdecode4 port map (botsel, sel(sel'Left-1 downto 0), Y4,Y5,Y6,Y7);

end B;

architecture B2 of MSdecode8 is
begin
decode8 : process (enable, sel)
begin

PCT/US99/02959

Y0<="0"; YI<="'0"; Y2<="0"; Y3<="0"; Y4<="0"; Y5<="0"; Y6<="0"; YI<="0";

if enable="1" then

case sel is
when "000" => Y0 <="I";
when "010" => Y2 <="1";
when "100" => Y4 <="'1";
when "110" => Y6 <="'1";

end case;

end if;
end process;

when "001° => YI <="1";
when “011° => Y3 <="'I";
when °101" => Y5 <="1";
when others => Y7 <="1°;

10

15

20

25

30

35

40

45

50

WO 99/40522
end B2;

-~ 16-output decoder

-~ enable - enables the decode
-- sel -chooses which output
- Yn - one bot output

library ieee;
use iece.std logic_1164.all;

entity MSdecodel6 is
port (enable : in std_ulogic;

PCT/US99/02959

sel :in std_ulogic_vector('3 downto 0);
Y0,Y1,Y2,Y3,Y4,Y5.Y6,Y7,Y8,Y9,YL0,Y11,Y12,Y13,Y14,Y15 : out std_ulogic);

end;

architecture B of MSdecode16 is
component MSdecode8
port (enable : in std ulogic;

sel :in std_ulogic_vector(2 downto 0);
Y0,Y1,Y2,Y3,Y4,Y5,Y6,Y7 : outstd ulogic);

end component;
signal topsel, botsel : std_ulogic;
begin
topsel <= enable and not sel(sel’Left);
botsel <= enable and sel(sel’Left);

top8 : MSdecode8 port map (topsel, sel(sel’Left-1 downto 0), Y0,Y1,Y2, Y3, Y4, Y5, Y6, Y7);
bottom8 : MSdecode8 port map (botsel, sel(sel’Left-1 downto 0), Y8,Y9,Y10,Y11,Y12,Y13,Y14,Y15

)
end B;

architecture B2 of MSdecodel6 is

. begin

decode16 : process (enable, sel)
begin

YO<="0% YI<="0"; Y2<='0" Y3<="0" Y4<='0"; Y5<="0"; Y6<="0"; YI<='0";
Y8<="0"; Y9<="0%YI0<="03Y11<="0'; YI2< ='0"; YI3< =0"; Y4 < ='0'; YI5<="0;

if enable="1" then
case sel is
when "0000° => Y0 <="'1";
when "0010" => Y2 <="'1";
when "0100" => Y4 <="'1"
when "0110" => Y6 <="'I";
when "1000° => Y8 <="'1";
when "1010" => Y10 <="'1";
when "1100" => Y12 <="1";
when "1110" => Y4 <="]1";
end case;
end if;
end process;

when "0001" => Yl <="1";
when "0011" => Y3 <="1";
when "0101* => Y5 <="1";
when "0111" => Y7 <="1";
when "1001" => Y9 <="'1";
when "1011" => YIl <="1";
when "1101" => Y13 <="1";
when others => Y15 <="1";

39

10

15

20

30

35

40

45

50

WO 99/40522 PCT/US99/02959
end B2;

- 32-output decoder

- enable - enables the decode
-- sel - chooses which output
-~ Yr - onehot output

library ieee;
use ieee.std_logic_1164.all;

entity MSdecode32 is
port (enable : in std_ulogic;
sel :in sid ulogic_vector(4 downto 0);
Y0, Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8, Y9, Y10,Y11,Y12,Y13,Y14,Y15,
Y16,Y17,Y18,Y19,Y20,Y21,Y22,Y23,Y24,Y25,Y26,Y27,Y28,Y29,Y30,Y31 : out std_ulogic);
end;

architecture B of MSdecode32 is
component MSdecode16
port (enable : in std_ulogic;
sel :in sid_ulogic_vector(3 downto 0);
¥0,Y1,Y2,Y3,Y4,Y5,Y6,Y7,Y8,Y9,Y10,Y11,Y12,Y13,Y14,Y15 : out std_ulogic);
end component;
signal topsel, botsel : std_ulogic;
begin
topsel <= enable and not sel(sel' Left);
botsel <= enable and sel(sel'Left);
topl6é : MSdecode16 port map (topsel, sel(sel’Lefi-1 downto 0),
Y0, Y1, Y2, Y3, ¥4, Y5, Y6, Y7, Y8, Y9,Y10,Y11,Y12,Y13,Y14,Y15);
borom16 : MSdecodel6 port map (botsel, sel(sel’Lefi-1 downto 0),
Y16,Y17,Y18,Y19,Y20,Y21,Y22,Y23,Y24,Y25,Y26,Y27,Y28,Y29,Y30,Y31);
end B;

architecture B2 of MSdecode32 is
begin
decode32 : process (enable, sel)
begin
YO< =0 YI<="0'; Y2<='0'; Y3<="0"; Y4<="0"; Y5<="0"; Y6<="0"; Y7<="0";
Y8<="0"; Y9<="0";Y10<="0"; Y1} <="0"; YI2<="0"; Y13< ='0"; Y14 < ="0"; YI5 < ="0" ;
Y16<="0"; Y17< ="0"; YI8<="0";Y19< ='0"; Y20< ='0"; Y21 < ='0"; Y22< ='0"; Y23 < =0 R
YU <="0"; Y25<="0"Y26<='0"; Y27< ="0"; Y28< ='0"; Y29< ='0"; Y30< ='0"; Y31 < =0 ;
if enable="1" then
case sel is
when "00000" => Y0 <="'l"; when "00001" => Y1 <="1";
when "00010" => Y2 <="'}1'; when "00011" => Y3 <="'1";
when "00100" => Y4 <="'1"; when "00101" => Y5 <="l%
when "00110" => Y6 <="1"; when "00111" => Y7 <="'I";
when "01000° => Y8 <="'1'; . when'0100l1" => Y9 <="'1";
when "01010" => Y10 <= "‘1"; when "01011" => YIl <="I";
when "0L100" => Y12 <="1"; when "01101" => Y13 <="I";

40

10

15

20

25

30

35

40

45

50

WO 99/40522 PCT/US99/02959

when "01110° => Y4 <="'1"; when "01111" => YI5 <="1";
when "10000" => YI6 <="1"; when "10001" => Y17 <="'1";
when *10010° => YI8 <="'"1"; when "10011" => YI9 <="1";
when "10100" => Y20 <="'1"; when "10101° => Y2l <=']';
whes "10110" => Y22 <="}"; when “10111" => Y23 <="'I";
when "11000" => Y24 <="'1"; when *11001" => Y25 <="I';
whes "11010" => Y26 <= '1’; when "11011" => Y27 <="1';
whes "11100" => Y28 <= '1"; when "11101" => Y29 <="1;
when "11110" => Y30 <="}1"; whenothers => Y3] <="1";
end case;
end if;
end process;
end B2;
— 64-output decoder

-~ cnable - enables the decode
-~ sel -chooses which output
- Yn - onchot output

library ieee;
use ieee.std logic_1164.al);

entity MSdecode64 is
port (enable : in sid_ulogic;

sel :instd_ulogic_vector(5 downto 0);
YO, Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8, Y9, Y10,Y11,Y12,Y13,Y14,Y15,
Y16,Y17,Y18,Y19,Y20,Y21,Y22,Y23,Y24,Y25,Y26.Y27,Y28,Y29,Y30,Y31,
Y32,Y33,Y34,Y35,Y36,Y37,Y38,Y39,Y40,Y41,Y42,Y43,Y44,Y45,Y46,Y47,
Y48,Y49,Y50,Y51,Y52,Y53,Y54,Y55,Y56,Y57,Y58,Y59,Y60,Y61,Y62,Y63 : out std_ulogic);

end;

architecture B of MSdecode64 is
component MSdecode32
port (enmable : in std_ulogic;
sel :in sid uvlogic_vector(4 downto 0);
Y0, Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8, Y9, Y10,Y11,Y12,Y13,Y14,Y15,
Y16,Y17,Y18,Y19,Y20,Y21,Y22,Y 23,Y24,Y25,Y26,Y27,Y28,Y29,Y30,Y31 : out std ulogic);
end component;
signal topsel, botsel : std_ulogic;
begin
topsel <= enable and not sel(sel'Left);
botsel <= enable and sel(sel'Lefi);
t10p32 : MSdecode32 port map (topsel, sei(sel'Left-1 downto 0),
Y0, Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8, Y9, Y10,Y11,Y12,Y13,Y14,Y1S,
Y16,Y17,Y18,Y19,Y20,Y21,Y22,Y23,Y24,Y25,Y26,Y27,Y28,Y29,Y30,Y31);
bottom32 : MSdecode32 port map (botsel, sel(se)’'Left-1 downto 0),
¥32,¥33,Y34,Y35,Y36,Y37,Y38,Y39,Y40,Y41,Y42,Y43,Y44, Y45, Y46,Y47,
Y48,Y49,Y50,Y51,Y52,Y53,Y54,Y55,Y56,Y57,Y58,Y59,Y60,Y61,Y62,Y63):
end B;

41

10

15

20

25

30

35

40

45

50

WO 99/40522

architecture B2 of MSdecode64 is

begin

decode64 : process (enable, sel)

begin

Y0<="0"; YI<='0"; Y2<="0"; Y3<="0'; Y4<="0";
Y9<="0"; YI0<="0"; Y11<="0"; YI2<="0";

Y8<="0";
Y15<="0";

Y16<="0"; YI7<='0"; Y18<="0"; Y19< ="0"; Y20< ="0";

Y23<="0";

Y24<="0"; Y25<="0"; Y26<='0"; Y27< ="0"; Y28< ="0";

Y31<="'0";

Y32<="0"; Y33<='0"; Y34<="0"; Y35<="0"; Y36<="0":

Y39<="0";

Y40<="0"; Y41<="0'; Y42<="0"; Y43< ="0"; Y44< ="0";

Y47<="0";

{

PCT/US99/02959

Y5<="0"; Y6<="0"; YI<="0";

Y13<="0"; Yl4< ="0";
Y21<="0"; Y22<="0";
Y29<="'0"; Y30< ='0";
Y37<="0"; Y38<="0";

Y45< ="0"; Y46< ='0";

Y4B<="0"; Y49<="0";YS0< ='0"; Y51<="0"; Y52< ='0"; Y53 < ='0"; Y54 < ="0"; Y55 < ='0" ;
Y56 <="0"; Y57<="0";Y58<="0",Y59< ='0"; Y60< ='0"; Y61 < ="0"; Y62< ='0"; Y63 < ="0" H

if enable="1" then
case sel is
when "000000"
when "000010”
when "000100"
when "000110°
when "001000*
when *001010"
when "001100"
when "001110"
when "010000"
when *010010"
when "010100"
when 010110
when "011000"
when “011010"
when "011100"
when “011110°
when *100000”
when "100010"
when *100100"
when “100110*
when "101000"
when "101010"
when "101100"
when "101110"
when 110000
when "110010"
when "110100"
when "110110"
when "111000"
when “111010”
when "111100"
when "111110*

L | T O I I I I I T R TR I A A A A I I |

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVYVY

Y0 <=
Y2 <=
Y4 <=
Y6 <=
Y8 <=
Y0 <=
Y2 <=
Y4 <=
Y16 <=
Yi8 <=
Y20 <=
Y22 <=
Y24 <=
Y26 <=
Y28 <=
Y30 <=
Y2 <=
Y34 <=
Y36 <=
Y38 <=
Y40 <=
Y42 <=
Y44 <=
Y46 <=
Y48 <=
Y50 <=
Y52 <=
Y54 <=
Y56 <=
Y58 <=
Y60 <=
Y62 <=

"
1
"l:
s
T
"0
e
lll;
s
'll;
lll:
1
o
o
'll;
T
o
'l';
'l';
'
lll;
g
'l';
P
‘1
l]l;
oo

ill;

when "000001°
when 000011~
when 0001031 "
when "00011i1"
when "001001"
when "001011°
when “001101"
when “001111*
when 010001
when 010011
when "010101*
when 010111
when 011001~
when "011011"
when "011101"
when *011111"
when "100001"
when 100011
when 100101
when "100111"
when "101001"
when *101011"
when °101101*
when "101111"
when "110001"
when "110011"
when 110101
when *110111*
when 111001
when "111011”
when "111101”
when others

42

=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=2>
=>
=>
=>
=>
=>
=>
=>
=>

Yl <="1";
Y3<="1";
Y5 <="1"
Y7 <="1%
Y9 <="1";
Yl <="1";
Yi3 <="1";
YIS <="1";
Y17 <="1"
Yi9 <="1";
Y21 <="1"
Y23 <="1"
Y25 <="1";
Y27 <="17%
Y29 <="1";
Y3l <="1";
Y33 <="1";
Y35 <="1';
Y37 <="1%
Y39 <="}1";
Y41 <= "1°;
Y43 <="'1";
Y45 <="'I";
Y471 <="1";
Y49 <="1";
Y51 <="1%;
Y53 <="1"
Y55 <="1";
Y57 <="1";
Y59 <="1";
Y6l <="1"

=> Y63 <="I";

10

15

20

WO 99/40522 PCT/US99/02959

end case;
end if;

Referring to figure 6, a low level description of the macrocell is shown and denoted
generally as 310. Data is routed in and out of macrocell 160 byvthe upper portion of a
macrocell. The boxes labeled "1x" 312 and "2x" 314 denote a set reset circuit called a
flip-flop. |

Data enters input port 316 and input port 318 and enters equalization RAM 320 and
equalization RAM 322, where the incoming streams are optionally equalized to one another
in time. Three or four streams may be equalized, or 2 pairs of streams may be
independently equalized. The equalizationblock 324 may also intentionally delay streams;
either by an absolute value, or with respect to one another. In one embodiment, a 32
pixels per stream is permitted. To ease the bunien of macrocell equalization at the input,

and to provide properly equalized signals at the output, the equalization block 324 attempts

" to bring incoming signals as closely together in time as possible.

Data output 326 and data output 328 make the four unique data streams available
as ‘outputs by multiplexer 330 and muitiplexer 332, There are four 2x data streams
available that may feed output 326 and output 328: two streams from equalization block
324, and a multiply output 240 and an add output 280 from macroceil 180. During each
clock phase 334, multiplexer 336 places logic values generated by control registers 338 on
the select line of multiplexer 330 which enables multiplexer330 to select from the selection

of inputs. Control logic 340 places a logic value on select line 341 which enables

43

10

15

20

WO 99/40522 PCT/US99/02959
multiplexer 332 to select from the available inputs for each clock phase. If the order of

the data needs to be reversed for any reason, it can be accomplished using the equalizatin
block 324.

The 1x data stream block 342 used by the macrocell 310 are generated from the
outputs of the equalization block 324. The two 2x data streams 344 and 346 generated by
equalization block 324 are broken into four 1x data streams 342. These four streams 342
may represent a single pixel from multiple streams, multiple pixels from a single data
stream, or a combination of the two. Finally, there are six 16-bit constant registers 348
that can be used to feed constant values to the macrocell.160. Routing of these constants
is shown in the macrocell diagram 160. Configuration registers 348 can be restricted on
a bitwise basis. Upon system power up configuration resisters 348 reads and stores
configuration parameters. Register 348 values may be changed to allow the MSIC to
perform different operational functions for various different applications.

Figure 7 is a high level depiction of a MSIC and is denoted gererally as 350. The
MSIC 350 is a programmable/configurablearray similar in some respects to FPGA's (Fiekd
programmable Gate Arrays). FPGA's are made up of thousands or hundreds of thousands
of cells programmed or configured at the gate level using basic and/or boolean logic
circuits. Unlike FPGA's the MSIC 350 contains only 8 cells, called Macrocells 352.
These macrocells 352 are configurable at the mathematical operation level

(addition/subtraction/multiplication/ comparison) rather than at the boolean logic level

10

15

20

WO 99/40522 PCT/US99/02959

(and/or/xor/invert). This reduces the size of the chip making it more efficient and cost
effective while providing better performance.

For example, a single multiplication operation represents thousands of boolean
operations. In an MSIC 350, mathematical constructs are built-in for efficiency, and
they are configured in the same way that boolean logic operations are configured in an
FPGA. As shown,8 macrocells 352 are used in the MSIC 350 but other macrocells
configurations are also envisioned according to various embodiments. For this
embodiment, each macrocell 352 operates at up to 40 MHz. For data speeds of 20 MHz
or less, each macrocell 352 can be reconfigured twice per data clock to perform to
completely different operations, thus effectively providing 16 macrocells 352. For
processing speeds between 41-80 MHz, each pair of macrocells 352 alternates operation
to effectively provide 4 macrocells 352. The macrocells 352 consist of a core set of
arithmetic logic units designed to perform defined math furctions. The interconnects 353
between the array of macrocells354 can be re.struc_:turcd to perform user specified functions
so that performance and versatility may be utilized.

The MSIC 350 comprises of a support logic 356 to support the main Macrocell
array 354 and a input block 358 and output block 360 to control the input and output ports.
Input block 358 takes data in from the MSIC interface, and performs some elementary
processing on it to make it suitable for general-purpose processing within the MSIC 350,

depending on what format was input. The Output block 360 takes data that has been

45

10

15

20

WO 99/40522 PCT/US99/02959

processed and performs some elementary additional processing to put the data in a svitable
format upon exiting MSIC 350, depending on what format is desired.
The support logic block 356 facilitates the programming of macrocells 352, provide

information about the incoming signal to other blocks of MSIC 350 and enbances the

overall functionality of the MSIC 350 among many other things. Support logic 356

includes several processing elements such as, video line-delays for performing vertical
processing on images, and a summation block 404 to allow the outputs of any or all
macrocells 352 to be summed together in a programmable fashion. There is also a block
that synthesizes the processing clock based on an incoming video signal, insuring
synchronicity between the system and the stream signal that it is processing.

Figure 8 illustrates a diagram illustrating the internal flow process of a MSIC 350
and is denoted generally as 400. MSIC 350 primarily comprises of a support logic block
356, input block 358 and a output block 360 and a core set of macrocelis 354. Diagram
400 depicts the major functional blocks of a MSIC 350 centered around a routing block
402. This is arguable the most accurate representation of data flow within MSIC 350,
although in actuality routing is interspersed among the other functional blocks rather than
being centralized.

Within MSIC 350, video is represented within the fractional portion of a signed
16-bit fixed-point number. Video data will be contained to the fractional bits and appear

as numbers between zero and one. The options for numeric formats are +1.14, +3.12,

46

10

15

20

WO 99/40522 . PCT/US99/02959

and £5.10. The sign-bit and the integer bits provide headroom in both directions for
intermediate results.

There are differing requirements regarding numeric formats that are imposed by
various sections of MSIC 350. For instance, the summation block 404 accepts arbitrary
input formats, and generates arbitrary output formats. Multiplier 244 within macrocell 352
also is able to operate on arbitrary input formats, and generate an arbitrary output format.
Adders 209 and 242 within macrocell 160 require that the inputs and output are all of
identical format.

Summation block 404 connects to every macrocell 352, and can calculate the sum
of any arbitrary number of adjacent inputs. An arbitrary number of sums may be
calculated this way. This function is provided prirarily for use in implementing Finite
Impulse Response ("FIR”") filters, but other uses may be found. For this embodiment,
summation block 404 has 8 inputs, and can sum arbitrary numbers of arbitrary numbers
of adjacent inputs. Summation block 404 may sulﬂ an arbitrary number of input fields,
each of which is composed of an arbitrary number of adjacent inputs.

Processor Interface block 406 allows read/write access to all of the control registers
and main RAM blocks 408 in un-configured versions of MSIC 350. In configured
versions, the addresses and data for registers pass through an aliasing mechanism that
allows for customized address maps and restricted functionality based on the configuration
stored in non-volatile RAM. MSIC is equipped with a set of mapping aliases which

defines the addresses at which a user can access system configuration parameters.

47

10

15

20

WO 99/40522 PCT/US99/02959
Genlock block 410 allows the chip to synchronize to the timing of one of the

incoming video streams, this provides horizontal and vertical timing information for
general-purpose use within the chip. Optionally, this block 410 can generate stand-alone
video timing, given an appropriate pixel clock, or can also generate video timing from the
course digital data stream which has been converted from the transmitted analog signal.
Genlock block 410 is responsible for generating video timing synchronized to the outside
world, or stand-alone.

The two timing signals that may be associated with any stream of video data are
horizontal and vertical blanking signals. Composite, horizontal, and/or vertical sync
signals may also be used. Internally, one or more arbitrary timing signals will be properly

processed along with the video stream information. The most common expected

. configuration is to associate composite sync and horizontal and vertical blank witha video

signal. Horizontal and vertical blank will be delayed along with the video, while
composite sync will be re-synchronized at the output.

Genlock block 410 will make use of the horizontal and vertical blanking
information to generate a full set of video synchronization signals, as well as generating
processor interrupts, and providing streams of numbers representing the horizontal and
vertical position for use in region definition. Video synchronization signals for input to
the genlock block 410 may come from the video inputs, outputs, and possibly also from

a dedicated set of video timing input pins.

48

10

15

20

WO 99/40522 PCT/US99/02959

The video synchronization signals generated by genlock block 410 may be re-
synchronized to the output video and used to provide composite sync on video streams that
may not have originally contained such information. One example of thisis the process of
converting ITU-601 video to RS-170A. Since ITU-601 video does not contain any
composite sync information, it must be manufactured to generate a valid RS-170A stream.

Statistics block 412 is responsible for calculating useful statistics, such as min,
max, mean, etc., on a video stream. This block 412 also is responsible for generating
random numbers and outputting them to the rest of MSIC 350. This block 412 will also
be able to provide streams of random numbers for use by other portions of MSIC 350.
There will be two random mmber generators on MSIC 350; one providing a static set of

randomr: numbers synchronous to the timing of the incoming video, and the other providing

‘random numbers asynchronously to video. There will be three outputs from each

generator, each providing a different sequence of numbers.

The image statigtics that are calculated by statistics block 412 are intended to be
read by the processor. The chip can calculate statistics on a line, field, or frame basis.
This can be done on a one-time, or continual basis. Notification of the completion of
statistics calculations is provided both through an interrupt, and through polling facilities.
When the calculation is complete, the result is transferred to a temporary holding area
before notification of completion is made. This allows a new set of calculations to begin
without affecting the previous result. Each input to statistics block 412 may have a

different numeric format, and the output will be converted to the desired format. Statistics

49

10

15

20

WO 99/40522 PCT/US99/02959

block 412 has one input from each macrocell 352, and an undete.rmined number of outputs
that feed back into the routing complex.

Input and Output blocks 358, 360 provide the interface to allow video to pass
through MSIC 350. There is a single interface input port, and a.single interface output
port. Each of the interface ports interfaces to either three 10-bit channels, or two 16-bit
channels. Each channel may operate at up to 4x pixel clock rate, allowing a total of twelwe
10-bit streams or eight 16-bit streams to pass through an MSIC 350. The capability for
10-bit streams is provided primarily for interfacing to standard video devices, while the
16-bit format allows data to be communicated between MSIC 350 without losing numeric
precision, regardless of the mumeric format.

MSIC 350 can contain twelve 1K x 6-bit RAM cells 408. These cells (and their
associated logic) may be configured somewhat arbitrarily as either Look-up Tables (called
LUT's) or Delay-Lines (Referred to here as FIFO's). The twelve 1K x 6-bit RAM blocks
within the chip can be configured in a variety of ways, either as FIFO's or LUT's, having
varying widths and depths. FIFO'shave a variable delay, up to 1K, and can buffer 10-bit,
12-bit, or 16-bit data. LUT's can take a 10-12 bit input and output either 12 or 16 bits.
FIFO's and LUT's can be intermixed, as can the differing widths and depths.

The FIFO's can be either 10-bits, 12-bits, or 16-bits wide. In 10-bit and 16-bit
modes, two additional video timing signals (such as composite sync) can be delayed
through the FIFO along with the video. FIFO’s are always 1024 words deep, but delay

is programmable. 1f additional depth is required, FIFO's can be concatepated end-to-end.

10

15

20

WO 99/40522 PCT/US99/02959
In 10 and 12-bit modes, there are six FIFO's available. In 16-bit mode, only four FIFO's

are available. For line lengths that exceed 1024 when horizontal blanking is taken into
consideration, there is also a start/stop mode that will only delay active pixels. Any data
in the horizontal blanking region is lost under this scenario.

For example, in Look-up Table (LUT) mode, the twelve RAM's can be configured
as follows:

Input Bits Output Bits # LUT's Notes

10 12 6
10 16 4
11 12 3
11 16 2
12 12 1 4 RAM's remain available.
12 16 1

The four remaining available RAM's could be used, for example, as two 2 FIFO's,
two 10-in, 12-out LUTS, or one 11-in, 12-out LUT. A single 10-in, 18-out LUT could
also be constructed, leaving a single six-bit RAM available. This final remaining RAM
would not be able to be used.

Figure 9 illustrates how data flows through the inputand output block 358, 360 and
is denoted generally as 400. The first/final step is an input interface 452 and an output
interface 454. The rest of the block is dedicated to pre/post-processingthe stream to allow

it's format to conform to various expectations.

51

10

15

20

WO 99/40522 PCT/US99/02959
If data entering MSIC 350 is digital ITU-601 format, the SAV/EAV codes are

intercepted, and read ITU-601 456 generates horizontal and vertical blanking inforrnation
to send -along with the video stream. The 27 MHz data stream is broken into two 13.5
MHz streams. For a write ITU-601 458, this process is reversed. Any input data in offset
binary format is converted to two's compliment format 460 for internal processing. At the
interface output 454, the 2's compliment is converted back 462 to original form if
required.

On input 452, data words are forced into the fractional bits of whatever numeric
format is to be used. The integer and sign bits are zeroed. Any unused fractional bits can
be padded 464 through several means: Zero-padding, one-half LSB padding, MSB
padding, or padding with random numbers. If rounding 466 is required on the output
interface 454, it can be accomplished through dynamic rounding, truncation, or adding
one-half LSB. |

Interpolation and decimation process 468 is the same for inputs 452 and outputs
454. The data stream can have linear interpolation or decimation 468 applied to convert
between data formats. At this point, the input/output data stream can be clipped470 to any
arbitrary value, to insure that it meets with the requirements of whatever format is used.

Edge shaping 472 of incoming streams may have the first three pixels immediately
before and after horizontal blanking 476 attenuated to ease edge-condition constraints for
lowpass FIR filtering. This is accomplished by multiplyingthe first three pixels on a line

by 0.25, 0.50, and 0.75, respectively. This is also applied to the last 3 pixels on a line,

10

15

20

WO 99/40522 PCT/US99%/02959

in reverse order. Un-shaping process 474 may also be performed at the output the same
way the process was performed at the input or the process may be reversed by multiplying
the three pixels in question by 4.00, 2.00, and 1.50.

The incoming video streams horizontal and vertical blanking regions may
optionally, and independently, be forced to zero for both inputs or outputs. Toease the
burden of macrocell equalization 428 at the input, and to provide properly equalized
signals at the output, the equalization block 478 attempts to bring incoming/outgoing
signals as closely together in time as possible.

Figure 10A is a table illustrating MSIC 350 data format and is denoted generally
as 500. Internally, numbers are represented in 16-bit fixed-point 2's compliment notation
502. Table 500 shows the values of bits at various positions in each of the three pumeric
formats 504 that MSIC 350 will support. The range 506 and precision 508 of each of the
numeric formats is shown at the right of the 1able 500. A +1.14 format has four decimal
places of fractional precision 508, while the other formats have only three decimal places
of fractional precision. The value of the least significant fractional bit for each of the
formats are as follows: +1.14 = .000061 = 2~ -14, 43.12 = .000244 = 2 ~ -12, and
+5.10 = .000976 = 2~ -10.

Normalized video information will be represented completely within the fractional
bits. That is to say: Black to White maps 0.0000 to 0.9999. 1t is importantto note that
some constants and/or intermediate results may involve numbers that are substantially

above or below the range 506 of normalized video. This is completely appropriate, and

53

10

15

20

WO 99/40522 PCT/US99/02959

it is for this reason that MSIC 350 supports a variety of numeric formats that exceed
normalized video range in both the positive and negative directions. If any particular
addition or -muhiplication generates a result that overflows or underflows the numeric
format being used, that result will clip to the highest or lowest number that is representabk
in that pumeric format.

Figure 10b illustrates the operation of the processor interface of MSIC 350 and is
denoted generally as 420. MSIC 350 has a 14-bit address bus and an 8-bit bi-directional
data bus, for a total footprint of 16K bytes. Of this, each of the 8 macrocells 352
consumes 64 bytes, for a total of 512 bytes. Another 512 bytes of various control registers
556 is possible, for a total of 1K bytes of control registers 556. There may be an
additionat 1K consumed for shadow registers 558. The twelve 1K x 6-bit RAM's 560 are
responsible for an additional 12K bytes of address space.

Reading and writing to MSIC 350 will be accomplished through the use of an
SRAM-type interface 552: Chip Select, Output Enable, and Read/Write. In addition to
these pins, there will also be an programmable interrupt output, driven from the video
timing that is either generated by MSIC 350, or passing through it. In addition to these
signals, there will also be pins to allow hardware reset, and to indicate the chip readiness
state after a reset.

Processor interface 420 is responsible for configuring MSIC 350 upon reset. The
remapping process 554 handles address and register remapping for configured versions of

the chip. This is accomplished by storing an address alias table, adefault values table, and

54

10

15

20

WO 99/40522 PCT/US99/02959

a register bitmask restriction table in non-volatile RAM 560. Non-volatile memory is
inaccessiinle by the user and contains a set of security bits that lock out access by the user
to configurationregisters. Upon reset, all registers in the chip reset toa known state. For
unconfigured chips, the reset process is now complete, and direct access to all registers
556 and 558 and RAM's 560 is turned-over to the processor interface 406.

For configured chips, after reset, the Boot Procedure block 550 writes the default
values to all registers in the MSIC 350 before the processor port 552 is allowed to
function. For processor access to an arbitrary register address, the addressis first mapped
554 through the address alias table to find the true address of the indicated register within
MSIC 350. The bitmask restriction table indicates which bits of this registerthe processor

may access. For writes, this bitmask allows any unauthorized bits to be replaced with

' default values before the actual write occurs. For reads, the bitmask restriction table

allows any unauthorized bits to be zeroed-out before the information is output.

Figure 11A illustrates the flow process through a RAM block 408 and is denoted
generally as 414. Data flow can be explained for both LUT’s and FIFO’s individually.
In either case, the input and output adjustment blocksalter the width of the stream through
rounding and padding to accommodate the width of the LUT or FIFO.

When used as a FIFO, after the input data is adjusted 562, it is stored in 2 RAM -
of RAM array 564 at the address generated by the FIFO controller 566, located in the

Address Generation section 566. The Address Generation section 566 also controls

55

10

15

20

WO 99/40522 PCT/US99/02959
reading the data out 568 of the FIFO at the appropriate time. Finally, the width of the

output data is adjusted back to the 16-bit format expected within the chip 570.

When used as a LU;I‘, after the incoming data is adjusted 562, it is passed to the
Address Generation section 566 for use as the addfess to 2 RAM in RAM array 564.
When the LUT is more than 10-bits deep, several RAM's will get the same address, and
the appropriate output is selected by the Output Selection section 568 using the upper
address bits from the Address Generation section 566 as the selectioncriteria. Finally, the
output data is adjusted back 570 to the 16-bit format expected within the chip.

Figure 11B illustrates how data handling problems are solved and is denoted
generally as 600. There are two data handling problems that are closely intertwined, that
are solved via the RAM FIFO facility 602. These issues are Ancillary data handling, and
handling edge conditions for FIR filters. Anci]la;-y data 604 occurs duﬁng the horizontal
and vertical blanking intervals of ITU-601 video. FIR filters are susceptible to ringing
caused by high-frequency components in the shar.p transition between blanking and active
video data 606. This problem can be solved by padding the blanking region with the edge
pixels from the active video portion of the signal.

If the video signal contains ancillary data 604, the padding process can overwrite
ancillary data 604 information in the blanking interval. It is undesirable for ancillary data
404 to be processed within the macrocells 352, since it typically contains encoded
information that would become invalid if scaling or offset were applied. Once ancillary

data 604 bypasses the macrocell array 354, the data is then re-equalizedto the video stream

56

10

WO 99/40522 PCT/US99/02959

by the next FIFO 602 in a multi-line filtering application. For applications where only a
single line is used, or filtering is not performed, the ancillary data can be re-equalized
using the FIFO's in the input and output blocks.

This separation between the active video pixels 606 and the ancillary data 604 also
allows padding to the blanking region in-between FIFO stages. Eeach time the video data
re-enters the FIFO 602, the padding information could be lost by overwriting it with
ancillary data 604, so the padding is recalculated at each stage. Since the FIFO 602 is
buffering a line, determining the value of the first pixel on a line "before” it actually occurs
is trivial. Replicating the last pixel on a line is also trivial. There may or may not bea
limited facility to perform a similar function in the vertical direction, but this has not been

conclusively determined.

57

10

11

12

WO 99/40522 PCT/US99/02959

What is claimed:
1. A integrated circuit signal processing device comprising:
a nonvolatile memory means for storing a plurality of configuration parameters;
a processing means coupled to said nonvolatile memory means and consisting of:
means for equalizing incoming streams of data in time to create
synchronized signals, said means comprising at least one input terminal for
receiving said streams and at least one output terminal at which said synchronized
signals are presented;
a set of interconnected arithmetic logic units communicably coupled to said'
output terminal for receiving said synchronized data; and
a set of configuration registers accessible by said aritbﬁetic logic units,
wherein the data in said configuration reg.ister determines the functionality of said

interconnected logic units.

2. The device according to claim 1 wherein said means for equalizing automatically .

detects the differencein time between any two or more of said incoming streams of data.

58

WO 99/40522 PCT/US99/02959

3. The device according to claim 2 wherein said means of equalizing is further
configured to automatically compensate for said difference in time between said two or

more data signals.

4. The device according to claim 1 wherein said nonvolatile memory
means contains a set of security bits that can selectively lock out access by a user to said

configuration registers.
5. The device according to claim 1 wherein said non-volatile memory
means comprise a set of mapping aliases which defines the addresses at which a user

accesses each of said configuration parameters.

6. The device according to claim 4 wherein each of said configuration

registers can be restricted on a bit wise basis.

7. The device according to claim 1 wherein each of said configuration

registers are loaded with configuration parameters upon reset.

8. The device according to claim 1 wherein each of said configuration

registers are loaded with configuration parameters upon power-up.

59

WO 99/40522 PCT/US99/02959

9. The device according to claim 3 wherein said means for equalizing may be

configured as a set of equalization RAMs.

10. The device according to claim 3 wherein said means for equalizing may be

configured as a set of FIFQ’s.

11. The device according to claim 1 wherein said interconnected
arithmetic logic units comprised of two adders and a multiplier used to perform a selective

set of arithmetic operations on said synchronized signals.

12, An integrated circuit for processing a plurality of data signals comprising:
means for equalizing said data signals in time to create a synchronized signal, said
means comprising at least one input terminal for receiving said data signals and at least ore
output signal terminal at which said synchronized signal is presented; and
logic means coupled to said output signal terminal, said means consisting of a
phurality of combined logic circuits for processing said synchronized signal and rendering

a pre-specified output.

13. The circuit device according to claim 12 wherein said means for equalizing said

data signals is capable of offsetting said data signals by a fixed amount.

60

10

11

12

WO 99/40522 PCT/US99/02959

14. A reconfigurable real time digital processing circuit comprising:

a plurality of interconnected macrocells, each of said macrocells comprising;

a means of equalizing incoming data streams received by the circuit; and
a plurality of arithmetic logic units coupled to said means of equalizing for
receiving synchronized data therefrom;

a support block coupled to said plurality of interconnected macrocells, said support
block providing interface between the processing circuit or and one or more external
systems which deliver said incoming data streams;

an input block coupled to said plurality of interconnected macrocells for receiving
digital data from and external source;

an output block coupled to said plurality of macrocells for transmitting processed

information to at least one of said external systems.

15. The real time digital processor according to claim 14 wherein each of said plurality
of interconnected macrocells further comprises a processing block used for equalizing said

streams of incoming digital data.
16. The real time digital processor according to claim 14 wherein each of said plurality

of interconnected macrocells comprises a universal set of memory registers used to control

the operation of said macrocells.

61

WO 99/40522 PCT/US99/02959

17. The real time digital processor according to claim 14 wherein said macrocell
comprises two adders and a multiplier configured to perform a selective set of arithmetic

operations on incoming digital data.

18. The real time digital processor according to claim 14 wherein the outputs of

macrocells are coupled to input of succeeding macrocelis.

19. The real time digital processor according to claim 14 wherein said support block

provides a means of generating a set of synchronization signals.

20. The real time digital processor according to claim 14 wherein said set of

synchronization signals are used to equalize input signals entering said macrocells.
21. The real time digital processor according to claim 14 wherein said support block
provides 2 means for calculating statistical data such as min, max, mean, etc., on said

incoming stream.

22. The real time digital processor according to claim 14 wherein said support block

provides a means for said external systems to read the contents of said control registers.

62

PCT/US99/02959%9

1/7

WO 99/40522

(KINO 1112~dSav) VI 8l
140d 3OVA¥3INI” 1SOH mn \@w , SNg 1S3y y
& a1 T
<=2 (S01z-dS0v Le -@; ke Y &
T WAD Q uo ~OZV o N\Ill e lﬁlll i |+J
mq, Sk | 140d WIN3S 0180d WIy3S | =1 so3y indino]| [r=som 1naino] |{ =>{som 1namno “
REL e A e |
Bds — 31303 o3 w3 |11 o - T ||
=58 = 934 LINSNVAL J_ 03y uiwswd |f] 1] waLis VW v
e Bg " | 593y anani (|| [somw nawt k| [0z tnaw |-
2 ALY L= s som 7S
! 11| 9nIGNvdHOD L .Mwi_/m- [T~ .ww
243 N SNd ana 4% ._Wv ¥ 7 Sna Ond %2
39NVHOX3
mmﬁwv X sng AM_\. i ve .
wo ”_ \
e S 7/ Snaand_ 7%z
9% y (4
M - \ g |
2o Y She va 74} Sha VR T o
m [14}] , Z
a ~ y i - |
SN s 0 |l ™ gL
s A, A ML I 2 ¥3eAnN | | 1 y3amnN }
HOLVYINID
B o noy yo | | B3ONINO3S) | dorvanad | [sowvuanao | |
WS WYHO0¥d
Towo T1iz-asam | L 100 WYAS | ssauaav | | ssaav | i
Au\nn s ~-g¢ $ oz L% viva ||
AHONIN AMON3N _.!.Mw.yunu -
- ¥31S193y
o Pl v | wesnodd) yoiionuin an . o 8

SUBSTITUTE SHEET (RULE 26)

WO 99/40522 PCT/US99/02959

2/7 44
52
PROGRAM_MEMORY BUS 2, A
46 '
\
BUS
EXCHANGE
@ 16 ooes
= £ - DMD
2 @ Y @ i @ 25 4} ~
\V_V VARV J
INPUT REGS INPUT REGS INPUT REGS
ALY MAC SHIFTER
12 A 14 16
outpur Recs kel || [ourpur ress kel | ourpur recs |
%1l 51l 7
T 7
1g RISWTBUS pre~ o
SQ‘ 82 "
62 66 fIiE

’~r £ 80
TD‘ : y/\ 76
] sl c
22 O]

7 @_ 74 L

FIG. 3

70

D0 D0 Dt D7 02 D2 D3 D3 D405

SUBSTITUTE SHEET (RULE 26)

WO 99/40522 PCT/US99/02959

3/7

162~

164
I70\A\ /
U

186

188~ 169

176~ 171
178 2\ .

ey T

180~ 172

182~/ T\ /
D 1 -
| 7 IS 168

1801 177 _ 181

179

SUBSTITUTE SHEET (RULE 26)

PCT/US99/02959

WO 99/40522
In 0.3 4/7
' /192
] 1
Amux m ACtrl F [G 5
1941 212 13
206
v
@’ise Seec 3]0210
209\(}‘ Bitwise A\
208 \Fimux [Setect
\
TR Sign Bi) .
220\ N SO
234~) .
226~ 236
2160}« ! /
238~ g 240 :
N\ . I' .
R ‘ =
i
244 248 | : | 230
]
Bl Lo} ity
Chit 266 L ::___Inl :
I In2
A Biwse 1 E.ﬂis
|
. K4
246 | e
tfoe—
11 K2_
276-"] Lxe s
7S
250
— 280 L— & purtout
Clipping / .
278 Block » AddOut

SUBSTITUTE SHEET (RULE 26)

WO 99/40522 PCT/US99/02959

16-bit Constont Registers . 24071 ™-280 332
34g-RIRIRIRIRIR] -
SARBREE FIG. 6

KO K1 K2 K3 K4 K5

350
360 356
Z /
358~ 1npur BLock | outeuT BLock < suPPORT Locic
]
MCELL MCELL MCELL
354
™ 353 §
MCELL MCELL &
&
352 @
\
MCELL MCELL MCELL
FIG. 7

SUBSTITUTE SHEET (RULE 26)

PCT/US99/02959

WO 99/40522
| %8 5/7 350 0
FIG. 8 INPUT omeur |
51 s at 1
MCELL | | smnstes |
:] N !
352 i 1 ! J 42
\ bedd ! !
MCELL [> ROUTING —=! GENLOCK | !
402/ T 1 1]
,---._.l. ___________ A —— _: l 410 :
1]
|| SuMMATION 406 RAM '
| \)
) \ i
167 404 PROCESSOR 408 :
D e T o J
450
358 FIG. 9 360 'd
. 5 A .
45207 IN INTERFACE OUT INTERFACE |~434
J "y
BN rew wRE P8
\/ {
460~ 1y 2's cowpument | | [our 2°s compLiment| 462
v {
464~]" g7 PADDING ROUNDING | 466
\/ {H
468 INTERP,/DEC INTErp/DEC 468
\/ {3 ’
410~ cuppinG cueeing 470
\/ {3
412~] " enge sHAPING EDGE UNSHAPING 1474
7 Y
478 EQUALémou Eounxmon 78

SUBSTITUTE SHEET (RULE 26)

PCT/US99/02959

WO 99/40522

gL 9IAd
12N 909

AVHYY 1130080V ¢|P._ 86G 01l H9]Hd 96¢
N 044 N zog SYILSIIIY MOGVHS [—| SH3LSIOIY TOMINOD

\ $09 . 095

009 | 4

Wvd 31LVIOA-NON
. S5
OL8~J"" 1snrav 1naino Vil OId /
_, SS3204d ONIddYW3Y
835~ joms 1naino | AV VY 195 s , 03¢
™ y

AN i _ 1 140d ¥0553008d |-+ 38n03008d 1008
g9c—| NOLV¥INIO SS3uaav 1SNPQY 1NdNI 206 1 N
i 0z
b

A
ply

666°1€ * 000°2¢~ ~|s/vle/sje/il v el v 8] |-/+ mwmm.mnm

666 000'8- “18/tlv/1|e/a)l v | 2] v |-/+ ms.n-i

mmwwnmwm 00002~ e/ [e/t /] 1 [7#]inni-/+1

\‘ I.I..INI..I.IL - - / r..l-/l..l.

005 80S gfc VOl OId 205 %05

SUBSTITUTE SHEET (RULE 26)

	2006-11-09 Foreign Reference

